2. Equations Used in Code Procedure
2.1. Classic POD Equations
- The following equations are used in the above code.
\begin{align}
\label{eq:einstein}
&\int_{r^{\prime}} \mathbf{S}\left(k ; m ; r, r^{\prime}\right) \Phi^{(n)}\left(k ; m ; r^{\prime}\right) r^{\prime} \mathrm{d} r^{\prime}=\lambda^{(n)}(k ; m) \Phi^{(n)}(k ; m ; r) \\
&\mathbf{S}\left(k ; m ; r, r^{\prime}\right)=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}(k ; m ; r, t) \mathbf{u}^*\left(k ; m ; r^{\prime}, t\right) \mathrm{d} t \\
&\alpha^{(n)}(k ; m ; t)=\int_r \mathbf{u}(k ; m ; r, t) \Phi^{(n)^*}(k ; m ; r) r \mathrm{~d} r
\end{align}
2.2. Classic POD Equations (Fixed)
\begin{align}
& \int_{r^{\prime}} \underbrace{r^{1 / 2} S_{i, j}\left(r, r^{\prime} ; m ; f\right) r^{\prime 1 / 2}}_{W_{i, j}\left(r, r^{\prime} ; m ; f\right)} \underbrace{\phi_j^{*(n)}\left(r^{\prime} ; m ; f\right) r^{\prime 1 / 2}}_{\hat{\phi}_j^{\psi(i)}\left(r^{\prime} ; m ; f\right)} \mathrm{d} r^{\prime} \\
& =\underbrace{\lambda^{(n)}(m, f)}_{\hat{\lambda}^{(n)}(m ; f)} \underbrace{r^{1 / 2} \phi_i^{(n)}(r ; m ; f)}_{\hat{\phi}_i^{(n)}(r, m ; f)} \\
%& \Rightarrow\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau\left(r^{1 / 2} \mathbf{u}(m ; r, t), r^{1 / 2} \\
%\times \mathbf{u}\left(m ; r, t^{\prime}\right)\right) \alpha_n(m ; t) d t^{\prime} \\
%&=\lambda_n(m) \alpha_n(m ; t),
&\alpha_n(m ; t)=\int_r \mathbf{u}(m ; r, t) r^{1 / 2} \Phi_n^*(m ; r) d r
\end{align}
2.3. Snapshot POD Equations
\begin{align}
&\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}_{\mathrm{T}}(k ; m ; r, t) \alpha^{(n)^*}(k ; m ; t) \mathrm{d} t \\
&=\Phi_{\mathrm{T}}^{(n)}(k ; m ; r) \lambda^{(n)}(k ; m) \\
&\mathbf{R}\left(k ; m ; t, t^{\prime}\right)=\int_r \mathbf{u}(k ; m ; r, t) \mathbf{u}^*\left(k ; m ; r, t^{\prime}\right) r \mathrm{~d} r \\
&\lim_{\tau \to \infty} \frac{1}{\tau} \int_{0}^{\tau} \mathbf{u}_{\mathbf{T}}(k; m; r, t) \alpha^{(n)*}(k; m; t) \, \mathrm{d}t \\
&= \Phi_{\mathbf{T}}^{(n)}(k; m; r) \lambda^{(n)}(k; m).
\end{align}
2.4. Reconstruction
The reconstruction is given by,
\begin{align}
q(\xi,t) - \bar{q}(\xi) &\approx \sum_{j=1}^{r} a_j(t) \varphi_j(\xi) \Rightarrow \\
q(r,\theta,t;x)
&=
\bar{q}(r,\theta,t;x) + \sum_{n=1} \sum_{m=0} \alpha^{(n)}(m;t) \Phi^{(n)} (r;m;x)
\end{align}
Since the snapshot pod implementation is not error-free, the reconstruction can only be recovered by writing
for \(\text{factor} \gg 0\).
\begin{align}
q(r,\theta,t;x)
&=
\bar{q}(r,\theta,t;x) + \text{(factor $\gamma$)}\sum_{n=1} \sum_{m=0} \alpha^{(n)}(m;t) \Phi^{(n)}(r;m;x)
\end{align}
2.5. Reconstruction
In order to reconstruct in code, caseId.fluctuation = ’off’. This is incorrect.
The necessary use of (factor \(\gamma\)) is incorrect
3. Derivation
To derive the questioned equation, consider the integral:
\begin{align}
\frac{1}{\tau} \int_0^\tau \mathbf{u}_{\mathrm{T}}(k ; m ; r, t) \alpha^{(n)^*}(k ; m ; t) d t .
\end{align}
Substitute \(\mathbf{u}_{\mathrm{T}}\) with its expansion:
\begin{align}
\frac{1}{\tau} \int_0^\tau\left(\sum_l \Phi_{\mathrm{T}}^{(l)}(k ; m ; r) \alpha^{(l)}(k ; m ; t)\right) \alpha^{(n)^*}(k ; m ; t) d t .
\end{align}
3.1. 4 Derivation
Exchange the order of summation and integration, and apply orthogonality,
\begin{align}
\sum_l \Phi_{\mathrm{T}}^{(l)}(k ; m ; r)\left(\frac{1}{\tau} \int_0^\tau \alpha^{(l)}(k ; m ; t) \alpha^{(n)^*}(k ; m ; t) d t\right) .
\end{align}
Due to the orthogonality, namely that \(\alpha^{(n)}\) and \(\alpha^{(p)}\) are uncorrelated
\begin{align}
\langle a^{(n)} \alpha^{(p)} \rangle = \lambda^{(n)} \delta_{np}
\end{align}
all terms where \(l \neq n\) will vanish, and there remains only the \(l=n\) term,
\begin{align}
\Phi_{\mathrm{T}}^{(n)}(k ; m ; r)\left(\frac{1}{\tau} \int_0^\tau \alpha^{(n)}(k ; m ; t) \alpha^{(n)^*}(k ; m ; t) d t\right) .
\end{align}
This derivation assumes the normalization of modes and their orthogonality, along with the eigenvalue relationship to simplify the original integral into a form that reveals the spatial structure ( \(\Phi_{\mathrm{T}}^{(n)}\) ) of each mode scaled by its significance \(\left(\lambda^{(n)}\right)\).
3.2. 6 Derivation
The cross-correlation tensor \(\mathbf{R}\) is defined as \(\mathbf{R}\left(k ; m ; t, t^{\prime}\right)=\int_r \mathbf{u}(k ; m ; r, t) \mathbf{u}^*\left(k ; m ; r, t^{\prime}\right) r \mathrm{~d} r\). This tensor is now transformed from \(\left[3 r \times 3 r^{\prime}\right]\) to a \(\left[t \times t^{\prime}\right]\) tensor. The \(n\) POD modes are then constructed as,
\begin{align}
\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}_{\mathrm{T}}(k ; m ; r, t) \alpha^{(n)^*}(k ; m ; t) \mathrm{d} t=\Phi_{\mathrm{T}}^{(n)}(k ; m ; r) \lambda^{(n)}(k ; m) .
\end{align}