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Schematic Variants for Muftler Subcomponents

N

Part 1 — Chamber and Baffle Part 2 — Fluid domain

Part 3 — Fiberglass Absorbant (gold)

Part 4 — Showing perforates (aimed at Part 5 — Final Assembly View
fiberglass)




Transmission Loss (dB) at 20°C

Ansys Simulation

Simulated Transmission Loss (0—1000 Hz) by approximating muftler walls as fluid at 20 deg C

Muffler Transmission Loss vs Frequency at 20°C
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Figure: Transmission Loss curve of the muffler between 5 Hz and 1000 Hz at 20°C.
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Transmission Loss (dB)
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Simlab Simulation

Simulated Transmission Loss (0—1000 Hz) Simlab model

Transmission Loss vs Frequency
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Sidlab and Ansys File Download Center

SIDLAB Model ANSYS Simulation
¢ File: Mark3sid.zip ¢ File: Mark-I-MDF-clearned-data.wbpz
¢ Created with: SIDLAB 5.1 ¢ Created with: ANSYS 2023 R2

¢ § Download SIDLAB File + § Download ANSYS File



Inly

50

105

Sidlab Components

dimensional units in mm
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I Sidlab Components

1. Pipe

3 5 qwrt 7.Pipe
3. Pipe 8. QWT
4. QWT 9. Pipe
5. Pipe 10. QWT

6. QWT 11. Pipe



Insertion Loss (dB)
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Simulated vs Measured Insertion Loss

Measured vs Simulated TL

Simulated vs Measured Insertion Loss - Big Blue Madness Muffler

—e— Measured Insertion Loss
—a— Simulated TL (SIDLAB)

Frequency (Hz)

Insertion Loss Explanation

Insertion Loss (IL) quantifies how
much sound is attenuated when a
muffler is added to the system.

General formula:

IL = 10logy, A|M§m_§v

muffler

Because our data is already in
decibels (dB), this simplifies to:

IL = Powerbaseline (dB) — POWeTImuffler (dB)

10



References

Cited Works

1. Munjal ML. Acoustics of Ducts and Mufflers. 2nd ed. Wiley; 2014. ISBN: 9781118443125.
https://doi.org/10.1002/9781118443125

2. Dokumaci E. Duct Acoustics: Fundamentals and Applications to Mufflers and Silencers. Cambridge University
Press; 2021. ISBN: 9781108840750. https://doi.org/10.1017/9781108840750

Note: These references are foundational texts in muffler and duct acoustics and were consulted for system modeling,
schematic development, and transmission loss analysis.

11



Anand Model: Viscoelastoplasticity and its Application to Solder Joints
Michael Raba, MSc Candidate at University of Kentucky
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Source Paper

Constitutive Equations for Hot-Working of
Metals

Author: Lallit Anand (1985)
DOI: 10.1016/0749-6419(85)90004-X
Dne of the foundational papers in thermodynamically consistent

/iscoplasticity modeling—especially significant in the context of
metals subjected to large strains and high temperatures.

Fig. 25. 1100 aluminum state gradient specimens before and after testing.
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CONSTITUTIVE EQUATIONS FOR
HOT-WORKING OF METALS

Lazerr Anann
Massachusens Insiivsse of Technology

(Communicaies by Taeoder Lehmasa, Ruhr Universiats Sochos)
Aatract — Elevated temperaturs deformation precesing — “bot-werkicg,” s an imporunt susp
during the manufacturing of most metal products. Ceatral 1 sty puccessful asalysis of @
Aotworiing process is the use af appropriace rate a ii%SEs_ﬁ
equanions for large, interrupied
-!G-lun _iiujuﬁiiiiigrlgilgiig

nager
i T menals. We use

3 salar a1 3 Syemere, fracei, seci-aeder e e varaien wich, in an avrage
comee, ropeeor wn Rotropicand e 4 riceropic resistance o plasic Nlaw affered by the jaer-
‘mal state of the masesial. In thia theory, we consider
mations {within the limits of texiunagh of isoiropic matwiak. Special cases iwithin the
E?!uﬁn_nl developed here} which should be suable for analyzng sot-working pro-
cesses are indicated

L INTRODUCTION

Hi g is an important ing step during the

more than uﬁu_.urw_ﬁ percent of all metal products. The main EE.F of hot-working
are that metals are deformed into the desired shapes at temperatures in the range of
—{1.5 through —0.9 f,,, where f,, : the melting temperature in degrees Kelvin, and at
strain rates in the range of —107% through —10%sec. It is to be noted that most hot-

working processes are more than mere :E—K.!-_EI e-!.unoﬂ an .Eve.e-.s !S_ of
hot-working s to subject the work,

histories which will produce microstructures that optimize the mechanical properties of
the prosuct.

The major quantities of metals and alloys are hot-worked under interrupted non-
isothermal conditions, The principles of the physscal metallurgy of such deformation
processing are now well recognized, e.g., Jowas er al, [1969], SELLARS & McG TEGART
[1972), MEQURES & JoNas [1975], and Sevzans [1978), During a deformation pass, the
stress is found o be 2 sirong function of the strain rate, lemperature, and the defect
and microstructural ssate of the material. The strain-hardening produced by the defor-
mation ESFSE:%S&..I:E..SG&QES&& These recovery pro-
cesses resul ina and of in such a manner that
a4 the strain in & pass increasss, the dislocations tend to arrange themselves into sub-
@rain walls, In some metals and alloys (especially those with a high stacking fault energy,
e-g-. Al, o-Fe and other ferritic alloys) dynamic recovery can balance strain-hardening
and an apparent steady state siress level can be achieved and maintained 10 large strains
before fracture oecurs. In other metals and alloys in which recovery is less rapid (sspe-
cially those metals with low stacking fault energies, e.g., Ni, y-Fe and other austenitic

3
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Applying Anand Model to
Represent the Viscoplastic
Deformation Behavior of Solder
Alloys

PE——— Coprignto 0 by ASE SEPTENBER 20Vl 123 1 26

urce: Wang, C. H. (2001). “A Unified
p—Plasticity Model for Solder Alloys.”
DOI: 10.1115/1.1371781

Case Study: Wang (2001) Apply to Solder

Why Wang's Paper Matters

Applies Anand’s unified viscoplastic framework to model solder behavior.
Anand's model can be reduced and fitted from experiments.

transition the theory into engineering-scale implementation.

Targets solder joints in microelectronic packages (chip on PCB, soldered
connections).
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Comparing Anand Model Predictions at Two Strain Rates

Observed Behavior

Top Graph (a): ¢ = 1072571

High strain rate — higher stress

Recovery negligible — pronounced hardening
Bottom Graph (b): € = 10 *s7!

Lower strain rate — lower stress at same strain
Recovery and creep effects more significant

Model Accuracy: Lines = model prediction, X =
experimental data
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Stress, & (MPa)

Key Insights from Wang (2001)

* “At lower strain rates, recovery dominates... the
stress levels off early.”

¢ “At high strain rates, hardening dominates, and
the stress grows continuously.”

Anand’s model smoothly captures strain-rate and
temperature dependence of solder materials.
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Main Equations of Wang’s Anand-Type Viscoplastic Model

Flow Rule (Plastic Strain Rate)

g 1/m
P = Aexp A\NMOHV Tmcw Amvg

Plastic strain rate increases with stress and
temperature.

No explicit yield surface; flow occurs at all
nonzero stresses.

Deformation Resistance Saturation s*

ool )
AP\ RT

Defines the steady-state value that s evolves
toward.
Depends on strain rate and temperature.

Evolution of Deformation Resistance s

. S
L mH\soT\M

o s
. S\ .p
sign AH m*v €
¢ Describes dynamic hardening and softening of
the material.

¢ s evolves depending on proximity to s* and flow
activity.

Note: Constants A, Q,m, j, hg, §,n, a are material-specific
and fitted to experimental creep/strain rate data.
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Values are from correspond to 60Sn40Pb solder

Anand Viscoplasticity Constants for 60Sn40Pb

Image Reference

parameters used in Anand's model:

Sp: Initial deformation resistance

Q/R: Activation energy over gas constant
A: Pre-exponential factor for flow rate

&: Multiplier of stress inside sinh

m: Strain rate sensitivity of stress

hy: Hardening/softening constant

3: Coefficient for saturation stress

n: Strain rate sensitivity of saturation

a: Strain rate sensitivity of hardening or
softening

Numerical Values

e Sy =5.633 x 107 Pa
*« Q/R=10830K

e A=149x107s7!

o (=11

* m=0.303

e hy = 2.6408 x 10° Pa
e §=28.042 x 10" Pa

* n=0.0231

e a=1.34

These constants match Wang's paper for modeling
60Sn40Pb viscoplasticity.
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Forward Euler Explicit time integration scheme Pseudocode

Initialization

Material constants: A, Q/R, j,m, hg, 3,n,a, E
Strain rate: €

Temperature set: {T}}

Set: eP(0) =0, s(0)=35

Time Evolution Loop

1 mnoom;uv =ct

2. Otrial = mﬁmsna —&?)

3. Compute z = Pw

4, Approximate sinh(z) (linearize if |z| < 1)
5. 6P = Ae /BT (sinh(z))Y/™

Plastic Flow & Resistance Evolution

&8 =4 AWm@\mﬂvz

7.4 =holl — = |*sign (1 - &) &P

8. Update: e (t + At) = eP(t) + P At

9. Update: s(t + At) = s(t) + sAt
10. Record (etotal, Ttrial)

Termination

e Stop when €qgta1 > Emax
* Ploto vse forall T;

Stress vs Inelastic Strain - 625n36Pb2Ag Alloy (Low Strain Rate le-5 1/s)

Temperature
— s5°C

Stress o (MPa)

o1 02 03 o4 o5
Inelastic Strain  (dimensionless)
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Forward Euler Scheme for Anand Model

import numpy as np
inport matplotlib.pyplot as plt
from scipy.integrate inport solve_ivp

erial constants for 625n36Pb2Ag solder alloy

# Mat
A = 2.24e8 #1/s

QR = 11200 #K

=13 # dimensionless
n=0.21 # dimensionless

ho = 1.62e10 # Pa

50 = 8.47e7 # Pa

s hat = 8.47e7  # Pa

n = 0.0277 # dimensionless
a=17 # dimensionless

E = 5.2e10 # Pa (Elastic modulus)

# Temperatures in Kelvin
T C = [-55, -25, 25, 75, 125]
T list = [T + 273.15 for T in T_C]

# Simulation parameters
strain_rate = le-5 # 1/s

eps_total max = 0.6

© nax = eps_total max / strain_rate
time_steps = 10000

t eval = np.linspace(0, t max, time_steps)

# Define the ODE system
def system(t, y, T):
epp, s=y
eps total = strain_rate * t
signa trial = E * (eps_total - ep_p)
x =] * sigma_trial / s

if np.abs(x) < 0.01:
sinh x = x
else:
sinh_x = np.sinh(np.clip(x, -30, 30))

sinh x = np.maximum(sinh x, le-12)
dep p = A * np.exp(-Q_R / T) * sinh x**(1/m)

s star = s_hat * (dep.p / A * np.exp(Q_R / T))**n
ds = ho * np.abs(l - s/s_star)**a * np.sign(l - s/s_star) * dep_p

return [dep_p, ds]

# Plotting
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Strain rate sensitivity of stress m

« Asm — 0, rate insensitive (yield)
« Asm — 1, small stress change causes big change in strain rate

Anand Flow Law: Varying $m$

20



Flow rule

Tensorial Flow Rule (directional form) Plastic Strain Rate (magnitude form)
) 3 T = 1/m

D? = ¢P AMMV P = \»ounwﬂ\mv TEEAMMVE
Equivalent Stress Definition Full Flow Rule with Hyperbolic Sine

_ /m /
D? = \»mwalmv TEWAMMVH_ AWWV ,

¢ Direction given by T'.
¢ Magnitude determined by hyperbolic sine based on G/s.
* 7 represents the effective shear stress computed from deviatoric stress.
¢ T=4 \mﬂ: : T is the von Mises Equivalent stress, but is formally defined without yield point
Summary: ¢ Full flow = direction x magnitude.
21



Evolution Equation for the Stress

s Evolution Equation (Rate form of Hooke's Law) Material Tensors and Operators

L=2uI+ (k— m:v 1 ® 1 — isotropic elasticity tensor

¢ LD represents how instantaneous strain rates
generate stresses according to the elastic material's
stiffness properties.

e u=pu(), k = K(0) — temperature-dependent moduli

\Y Q
T =L[D - D?| - II¢

rate-form Hooke’s law for finite deformation
ticity, with frame-indifference enforced through

the Jaumann rate.) o II = (3ak)1 — stress-temperature coupling
o ¢ a = a(f) — thermal expansion coefficient
Jaumann Rate Definition o D = sym(Vv) — stretching tensor

v ¢ W = skew(Vv) — spin tensor
T=T—-WT+TW « I = fourth-order identity tensor
¢ 1 = second-order identity tensor

 Stress rate follows Jaumann derivative to ensure frame indifference.
¢ Elastic response governed by isotropic fourth-order tensor L.

Summary: * Thermal expansion introduces additional stress through II6.

22



Stress Evolution and Thermal Effects

Stress Evolution and Thermal Effects Why Subtract the Thermal Term?
In the stress evolution equation, ¢ Thermal expansion creates strain even without
external forces.
\ . S . 2
T =L[D - D] - II4, Without subtracting II#, the model would falsely

attribute thermal strain as mechanical stress.
¢ Subtracting isolates the true mechanical response

6 ts the st h that would
erm IT represents the stress change that woula occur e el ChEEa,

> pure thermal expansion alone, without any mechanical
loading.

JE

increase of

fixed connection

* Thermal expansion induces strain without force.
¢ Subtracting II9 ensures only mechanical strains generate stresses.
Summary: » This keeps the constitutive model physically accurate during heating and cooling.
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Relaxed (Intermediate) Configuration

Context for the Relaxed Configuration

The relaxed configuration represents the material after
removing plastic deformations but before applying new
elastic deformations.

It is introduced to separate permanent plastic effects
from recoverable elastic effects.

All thermodynamic potentials, internal variables, and
evolution laws are defined relative to this frame.

The relaxed state provides a clean, natural reference
for measuring elastic strain E¢ and computing
dissipation.

Summary:

What Happens in the Relaxed Configuration?

The elastic deformation gradient F'¢ is measured from
the relaxed state to the current deformed state.
Elastic strain measures like C¢ and E€ are defined in
this configuration.

The Kirchhoff stress T is naturally associated with the
relaxed volume.

Plastic flow is accounted for separately through the
plastic velocity gradient L”.

¢ The relaxed configuration isolates elastic responses cleanly, enabling proper definition of thermodynamics and

plastic evolution laws.

24



Relaxed Configuration Constituative Laws

Kinematics in the Relaxed Configuration Stress and Power Quantities

¢ Elastic deformation gradient: ¢ Kirchhoff stress (weighted Cauchy stress):

F=F‘F?P = F°=Fpr! T = (det F)T
¢ Elastic right Cauchy-Green tensor: e Stress power split:

Cce=F"F° w=0° 4P
* Elastic Green-Lagrange strain tensor: WC=T:E , o=(CT): L7
H €
B =2(C°-1)
Summary:

¢ Elastic kinematics and stress measures are formulated relative to the relaxed configuration, cleanly separating
plastic and elastic contributions.

* Stress Power Split allows Anand to cleanly isolate plastic dissipation from elastic storage.

¢ Green-Lagrange strain tensor E¢ is used because it symmetrically captures nonlinear elastic strain relative to the
relaxed configuration

¢ The right Cauchy-Green tensor C°¢ = FFeis required as an intermediate to compute E° from the elastic
deformation gradient F'¢ without referencing spatial coordinates

25



Dissipation Separation: Elastic vs Plastic in Anand’s Model

Thermodynamic Separation

1. Start with Total Dissipation: * Elastic deformations are recoverable and do

Det—g>0 not cause entropy production.

N N * All dissipation stems from the plastic flow: w?.

where & =T : B + (C°T) : L?
2. Split Stress Power:

* Plastic work increases entropy and governs
viscoplastic evolution.
w=w"+uo
with: Summary:
e_T.R° The stress power split ensures that the second law

is satisfied by assigning dissipation solely to
irreversible processes.

4. Apply Elastic Energy Consistency:

W—p=0 = @P>0



Reference Configuration

Framework in the Reference Configuration Key Equations in the Reference Frame
The free energy v is defined relative to the reference * Free energy:
configuration. _
State variables like E°, 6, §, B, s are used as Y =9%(E6,3,B,3)
arguments of . o )
Stress is expressed using the second Piola—Kirchhoff * Dissipation inequality:
tensor S. - — —a —
Dissipation inequality, stress—strain relations, and Ym0 —p 'S Et(pof) -8 < o_

evolution laws are all written in reference variables.

Mass density p, from the reference configuration

normalizes all terms. o
S =po oE°

¢ Constitutive relation:

Summary:

¢ In the reference configuration, all energy storage, stress updates, and internal variable evolution are formulated
with reference-frame quantities for consistency and objectivity.



Thermodynamics

Thermodynamic Quantities Stress Power and Kirchhoft Stress
Free energy density: ¢ Stress power per relaxed volume:
—e—0
g o= E L
P

Reduced dissipation inequality:

|9 +70 —p 'T:L+ (o0) 'q-g<0

T= T— (P
State variables: T = (det F)T| or |T= A > v T

{E°,6,9,B, s} « Decomposition of stress power:

with E° as elastic strain and s as internal resistance.

¢ Free energy and dissipation govern thermodynamic consistency.
¢ Stress power naturally splits into elastic and plastic parts.
Summary: ¢ Kirchhoff stress simplifies stress evolution accounting for volume changes.

¢ Weighted Cauchy (Kirchhoff) stress:
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POD Analysis of Turbulent Pipe Flow
M. Raba

Created: 2025-09-15 Mon 12:39
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1. Code Execution and Layout

30



1.1. Layout

1.b7.m
2. initSpectral.m

« reads in binary files, takes eg m-fft
3. — initEigs.m

« forms corrMat, finds eigenvalues
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1.2. Layout 2

|. < initPod.m
« carries out POD calculations (quadrature, multiplication ggf betwen ae®) according to Papers (Citriniti George 2000 for Classic POD,
Hellstrom Smits 2017 for Snapshot POD)
. — timeReconstructFlow.m
« performs 2d reconstruction + plotSkmr (generates 1d radial graph)
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1.3. Important Switches
pipe = Pipe(); creates a Pipe Class. As the functions (above) are called, data is stored in sub-structs:

. obj.Caseld - stores properties like Re, rotation number .S, experimental flags such as quadrature (simpson/trapezoidal), number of gridpoints,
frequently called vectors (rtMatr = 1,...,0.5)

). obj.pod - eigen data, used for calculating POD

3. obj.solution - computed POD modes

L. obj.plt - plot configuration
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2. Equations Used in Code Procedure

34



/

2.1. Classic POD Equations

The following equations are used in the above code.

S (kym;r, ) 8™ (kym; ') 7' dr' = X (kym) @™ (k; ms 7)
1 /7

S (k;m;r,7') = lim — u(k;m;r, t)yu’ (kym;r',t)dt

T30 T Jo

Q?vQﬁ m;t) = \CQﬁ m;r, Snv?v.ﬁww m;r)rdr

T
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2.2. Classic POD Equations (Fixed)

\Eﬁiiiiigﬁfzﬁzﬁsi
P N————— ———
Wi (ryr'smi f)

(r'smsf)
= A(m, £)r'/26" (rym; f)
N—_——N—— —
Amspy 30 )
an(m;t) = \GASM 7, t)rt 2 &% (m; r)dr

»
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2.3. Snapshot POD Equations

1 T .
lim — ur(k; SZJSQE (k; m; t)de

™00 T Jo
= Av%: (k; Swﬂvv,gﬁﬂ m)
R (k;m;t,t') = \.ﬂQﬁS“ﬁwv:* (kymr,t)rdr
"
H T
lim — ur (k;m; 7, t)a™* (k;m; t) dt
=00 T Jo

= Av%;ﬁ\ﬁ Sl‘vvfﬁiQﬁ m).
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2.4. Reconstruction

The reconstruction is given by

a60) 70 ~ Y ay()e,(O) >
=1

q(r,0,52) = q(r,0,52) + > Y o (m; 1)@ (r;m; z)

n=1m=0

Since the snapshot pod implementation is not error-free, the reconstruction can only be recovered by writing for factor >> 0.

a(r,0,t;2) = (r, 0,t;3) + (factor 4) Y > o™ (m; )™ (r;m; 2)

n=1m=0

38



2.5. Reconstruction

In order to reconstruct in code, caseld.fluctuation = off”. This is incorrect. The necessary use of (factor ) is incorrect
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3. Derivation

To derive the questioned equation, consider the integral:

1 /7 .
I\ :aQ&S“ﬁ&QAS (k; m; t)dt.
T Jo

Substitute up with its expansion:

1

I\. M@%X?SMJQSAESMS Q?%Qﬁﬁﬁ&&.
T Jo -
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3.1. 4 Derivation
Exchange the order of summation and integration, and apply orthogonality,

1 /7 M
Memu (k;m;r) AI\ o (ks m; )™’ (k; SQV&V :
- 0

T

Due to the orthogonality, namely that a™ and a®) are uncorrelated

Ev = v,?JE.
all terms where [ # n will vanish, and there remains only the [ = n term,

1 /7 .
Avm:v (k;m;r) AI .\ a ™ (k; m; £) o™ (k; my; S&v .
T Jo
derivation assumes the normalization of modes and their orthogonality, along with the eigenvalue relationship to simplify the original integral into a

form that reveals the spatial structure ( &,ﬁ ) ) of each mode scaled by its significance A\/A:vv .



3.2. 6 Derivation

ross-correlation tensor R is defined as R (k;m;t,t') = [ u(k;m;r, t)u* (k;m;7,¢') r dr. This tensor is now transformed from [3r x 3r'] toa
[t x t'] tensor. The n POD modes are then constructed as,
17 . .
lim — up (k;m;r, &QE (k;m;t)dt = 0% ) Qﬁiwl\/?x\ﬁ m).

70 T Jo
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4. Result Comparison Classic/Snapshot
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4.1. Radial Classic

Klassik Rel1700 Velocity W POD for Rotation Number N = 3.0
10
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1r
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600

{mir))e

0 100 200 300 400 500 600
Lr
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4.2. Snapshot-Classic Comparison

Klassik Rel1700 Velocity W POD for Rotation Number N = 0.0

Suapshot Rel1700 Velocity T POD for Rotation Number N = 0.0

(@4 ()

0 100 2

100 200 300 400 500 600

00 300 400 500 600
Lr

100 200 300 400 500 600

300 400 500 600 0
It

Ir

10

i)

{
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4.3. Klassik POD S=0.0

Klassik Rel1700 Velocity W POD for Rotation Number N = 0.0

" n2 & AEORAMN
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i i
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4.4. Klassik POD S=3.0

Klassik Rel1700 Velocity W POD for Rotation Number N = 3.0

nie AEORAS o ni

300 400 500 600 400 500 600

400 500 600

a7



5. Energy n=0 Classic

Klassik Rel1700 Velocity W POD for Rotation Number N = 0.0
T I I




Klassik Rel1700 Vel

5.1. n=3 Classic

ity W POD for Rotation Number N = 3.0

10°

o
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5.2. Analysis
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6. Reconstruction
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6.1. Reconstruction

& AE0aaq

12

0.8

0.6

04

0.2

zmom.moo Reconstruction, t=2using (n,m)=(400,50) modes, obfl3
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