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Schematic Variants for Muffler Subcomponents

Y

Part 1 — Chamber and Baffle Part 2 — Fluid domain

Part 3 — Fiberglass Absorbant (gold)

Part 4 — Showing perforates (aimed at Part 5 — Final Assembly View
fiberglass)




Transmission Loss (dB) at 20°C

Ansys Simulation

Simulated Transmission Loss (0—1000 Hz) by approximating muffler walls as fluid at 20 deg C

Muffler Transmission Loss vs Frequency at 20°C

35

30

25 A

20+

151

104

200 400 600 800
Frequency (Hz)

Figure: Transmission Loss curve of the muffler between 5 Hz and 1000 Hz at 20°C.
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Simlab Simulation

Simulated Transmission Loss (0—1000 Hz) Simlab model

Transmission Loss vs Frequency
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Sidlab and Ansys File Download Center

SIDLAB Model ANSYS Simulation
¢ File: Mark3sid.zip ¢ File: Mark-I-MDF-clearned-data.wbpz
¢ Created with: SIDLAB 5.1 ¢ Created with: ANSYS 2023 R2

* § Download SIDLAB File * § Download ANSYS File
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1. Pipe

35 o aQwT  7.Pipe
3. Pipe 8. QWT
4. QWT 9. Pipe
5. Pipe 10. QWT

6. QWT 11. Pipe



Insertion Loss (dB)

Simulated vs Measured Insertion Loss

Measured vs Simulated TL

Simulated vs Measured Insertion Loss - Big Blue Madness Muffler

—e— Measured Insertion Loss

100} —#— Simulated TL (SIDLAB)
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Insertion Loss Explanation

Insertion Loss (IL) quantifies how
much sound is attenuated when a
muffler is added to the system.

General formula:

P,

muffler

IL = 10 ~O®5 A Phaseline v

Because our data is already in
decibels (dB), this simplifies to:

IL = PoweTbaseline (dB) — POWeTmuffler (dB)
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Anand Model: Viscoelastoplasticity and its Application to Solder Joints
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Source Paper

Constitutive Equations for Hot-Working of
Metals

Author: Lallit Anand (1985)
DOI: 10.1016/0749-6419(85)90004-X
One of the foundational papers in thermodynamically consistent

viscoplasticity modeling—especially significant in the context of
metals subjected to large strains and high temperatures.

Fig. 25. 1100 aluminum state gradient specimens before and after testing.

dmrepvens doresl o M, Vil 1w 2311 15 TR - 8
Presss i the LS A £ 1381 Prepuron Porw Lis

CONSTITUTIVE EQUATIONS FOR
HOT-WORKING OF METALS

Lazerm Anasn
Massachusents Insiivese of Technology

(Communicaied by Theoder Letmasa, Ruhr Uniersnds Soches)

Aatract — Elevated temperature deformation procesing — “Bot-werkisy,” is an imporant susp
during the manufactaring of most metal produsts. Ceatral 1o sny succesful asalysis of 2
Rot-eorking process s the use of appropriace rate a i:a%eiis_ﬁ
equanions for large, internupred
hardesing, the restol giiiiiiclgilgiig
-I.! re history effrcss. o ?il«n!‘ri l»a-v.!.!%. Ei!i_- ’.l.lzn
e use
2 scalar and a symmetri, rasees, seoond-oecer tessar a internal aribies which, in an average
o, ropreors om Rotropi aad e 4 misceropic pesisance to plasic Nlaw aifered by e iater-
‘ral state of the maserial. In thia theory, we consider
mations (within the limits of .!.EI-_ af isatropiz l._a_-r Special casey ?a.l. the
constiueive framewor deveioped
cesses are Indicated.

L INTRODUCTION

Hot-working fs an fmportant ing step during the

more than eighty-five percent of afl metal products. The main EE_.F of hat-working
are that metals ase deformed into the desired shapes as temperatires in the range of
—{1.5 through —0.9 §,,, where f,, : the melting temperature in degrees Kelvin, and at
strain rates in the range of —107 through —10%sec. It is 1o be noted that most hot-
working processes are more than mere :s—.n.!-_abn e—!.nnoﬂ an .Evea-_s !B_ of
hot-working is to subject the work

histories which will produce microstructures that optimize the mechanical properties of
the prosduct.

The major quantities of metals and alloys are hat-warked under interrupted non-
isathermal conditions, The principles of the physical metallurgy of such deformation
processing are now well recognized, e.g., Jowas et al. [1969], SELLARS & McG TEGART
[1972], MeQunes & Joxas [1975], and Sewans [1978), During a deformation pass, the
stress is found to be a strong function of the strain rate, lemperature, and the defect
and microstructural ssate of the material. The sirain-hardening produced by the defor-

mation E«SF&E:%:&._IE%QEg These recovery pro-
cesses result ina and of di in such a manrer that
2 the strain in & pass increasss, the dislocasions tend to arrange themselves into sub-
erain walls. In some metals and alloys (especially thase with  high stacking fault energy,
e.g-. Al o-Fe and other ferritic alloys) dynamic recovery can balance strain-hardening
and an apparent sieady stare siress level can be achieved and maintained to large sraing
before Fracture occurs. In other metals and alloys in which recovery is less rapid (sspe-
cially those metals with low stacking fault energies, e.g., Ni, y-Fe and other austenitic

us
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Applying Anand Model to

the Vi i
Deformation Behavior of Solder
Alloys

Soumat of St ackagng

Source: Wang, C. H. (2001). “A Unified
Creep—Plasticity Model for Solder Alloys.”
DOI: 10.1115/1.1371781

Case Study: Wang (2001) Apply to Solder

Why Wang's Paper Matters

Applies Anand’s unified viscoplastic framework to model solder behavior.
Anand's model can be reduced and fitted from experiments.

transition the theory into engineering-scale implementation.

Targets solder joints in microelectronic packages (chip on PCB, soldered
connections).

PCB
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Comparing Anand Model Predictions at Two Strain Rates

Observed Behavior

Top Graph (a): ¢ =1072s7*

High strain rate — higher stress

Recovery negligible — pronounced hardening
Bottom Graph (b): € = 10 457!

Lower strain rate — lower stress at same strain
Recovery and creep effects more significant

Model Accuracy: Lines = model prediction, X =

experimental data

-55°C

-25°C

Stress, s (MPa)

x 75°C

125°C

0 1 1 L

|
0.0 01 0.2 0.3 0.4 0.5 06 0.7

Inelastic strain, &

(a) £=1.0x107g"

Stress, o (MPa)

Key Insights from Wang (2001)

* “At lower strain rates, recovery dominates... the
stress levels off early.”

e “At high strain rates, hardening dominates, and
the stress grows continuously.”

Anand’s model smoothly captures strain-rate and
temperature dependence of solder materials.

XX XKHKHHARKK KK KKK a0

- -25°C

X 3% XXXNX PEC

75'C

125°C
1 1 | 1 L
0.3 04 05 06 0.7

Inelastic strain, £

(b) £=1.0x10%s"
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Main Equations of Wang’s Anand-Type Viscoplastic Model

Flow Rule (Plastic Strain Rate)

3 1/m
P = \»mﬁuA\myﬁWv TEWA%VQ

Plastic strain rate increases with stress and
temperature.

No explicit yield surface; flow occurs at all
nonzero stresses.

Deformation Resistance Saturation s*

()
AP\ RT

Defines the steady-state value that s evolves
toward.
Depends on strain rate and temperature.

Evolution of Deformation Resistance s

. s
L] mHFoH\M

a s
q :p
sign AH = |m*v &

¢ Describes dynamic hardening and softening of
the material.

¢ s evolves depending on proximity to s* and flow
activity.

Note: Constants A, Q,m, j, ho, 5, n, a are material-specific
and fitted to experimental creep/strain rate data.
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Values are from correspond to 60Sn40Pb solder
parameters used in Anand's model:

¢ Sy Initial deformation resistance

¢ @Q/R: Activation energy over gas constant
¢ A: Pre-exponential factor for flow rate

o &: Multiplier of stress inside sinh

¢ m: Strain rate sensitivity of stress

¢ hg: Hardening/softening constant

¢ s: Coefficient for saturation stress

» n: Strain rate sensitivity of saturation

¢ a: Strain rate sensitivity of hardening or

softening

Image Reference

Anand Viscoplasticity Constants for 60Sn40Pb

Numerical Values

e S;=5.633 x 107 Pa
* Q/R=10830K

e A=149x107s7!

o« =11

* m =0.303

o hy = 2.6408 x 10° Pa
o §=28.042 x 107 Pa

e n=0.0231

e a=1.34

These constants match Wang's paper for modeling
60Sn40Pb viscoplasticity.
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Forward Euler Explicit time integration scheme Pseudocode

Initialization

Material constants: A, Q/R, j,m, hy, 3,n,a, E
Strain rate: €

Temperature set: {T}}

Set:eP(0) =0, s(0)=35

Time Evolution Loop

ks maonm_ﬁﬁv =ct

2. Ogrial = mAmaon& - mﬁv

3. Compute z = Pw

4. Approximate sinh(z) (linearize if |z| < 1)
5. 6P = Ae /BT (sinh(z))Y/™

stress o (MPa)

Plastic Flow & Resistance Evolution

6.8* =3 A$m©\ﬂ,vz

7.8 = \«o_H == “sign AH - Wv er

8. Update: e?(t + At) = P (¢) + eP At

9. Update: s(t + At) = s(t) + sAt
10. Record (gotals Otrial)

Termination

* Stop when &1 > Emax
¢ Ploto vse forall T;

Stress vs Inelastic Strain - 625n36Pb2Ag Alloy (Low Strain Rate 1e-5 1/s)

o1 0z 03 04 o5
€ (dimensioniess)
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Strain rate sensitivity of stress m

o Asm — 0, rate insensitive (yield)
« Asm — 1, small stress change causes big change in strain rate

Anand Flow Law: Varying $m$

20



Tensorial Flow Rule (directional form)

¢ Direction given by T'.

Flow rule

Plastic Strain Rate (magnitude form)

_ 1/m
e = &meAlmv TEWAMMV%

Full Flow Rule with Hyperbolic Sine

o< s &))" (25

(L), 7= (L)

q

* Magnitude determined by hyperbolic sine based on 7/s.
e 7 represents the effective shear stress computed from deviatoric stress.

Summary: ¢ Full flow = direction x magnitude.

wH: : T is the von Mises Equivalent stress, but is formally defined without yield point
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Evolution Equation for the Stress
Stress Evolution Equation (Rate form of Hooke's Law) Material Tensors and Operators

‘M, ~L[D- D116 o L=2uI+ (k— mtv.u ®1— _mo:ov_o.m_mmzo_a\ tensor
¢ LD represents how instantaneous strain rates
generate stresses according to the elastic material's
stiffness properties.
o u=p(0), K = k(#) — temperature-dependent moduli

(rate-form Hooke’s law for finite deformation
plasticity, with frame-indifference enforced through

the Jaumann rate.) o II = (3ak)1 — stress-temperature coupling
» e a = a(f) — thermal expansion coefficient
Jaumann Rate Definition + D = sym(Vv) — stretching tensor

* W = skew(Vv) — spin tensor
v . _ . .
T=T-WT4+TW I = fourth-order identity tensor

e 1 = second-order identity tensor

¢ Stress rate follows Jaumann derivative to ensure frame indifference.
¢ Elastic response governed by isotropic fourth-order tensor L.
Summary: * Thermal expansion introduces additional stress through II6.

22



Stress Evolution and Thermal Effects

Stress Evolution and Thermal Effects Why Subtract the Thermal Term?
In the stress evolution equation, ¢ Thermal expansion creates strain even without
external forces.
v . . " . .
T =L[D - D?] - I, Without subtracting IT1§, the model would falsely

attribute thermal strain as mechanical stress.
¢ Subtracting isolates the true mechanical response

the t 6 ts the st h that would
e term I represents the stress change that woula occur 2.0:._ thermal m#moﬁm.

due to pure thermal expansion alone, without any mechanical
loading.

[

increase of
temperature

I
fixed connection

* Thermal expansion induces strain without force.
» Subtracting II9 ensures only mechanical strains generate stresses.
Summary: » This keeps the constitutive model physically accurate during heating and cooling.
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Relaxed (Intermediate) Configuration

Context for the Relaxed Configuration

The relaxed configuration represents the material after
removing plastic deformations but before applying new
elastic deformations.

It is introduced to separate permanent plastic effects
from recoverable elastic effects.

All thermodynamic potentials, internal variables, and
evolution laws are defined relative to this frame.

The relaxed state provides a clean, natural reference
for measuring elastic strain E¢ and computing
dissipation.

Summary:

What Happens in the Relaxed Configuration?

The elastic deformation gradient F'¢ is measured from
the relaxed state to the current deformed state.
Elastic strain measures like C°¢ and E€ are defined in
this configuration.

The Kirchhoff stress T is naturally associated with the
relaxed volume.

Plastic flow is accounted for separately through the
plastic velocity gradient L”.

¢ The relaxed configuration isolates elastic responses cleanly, enabling proper definition of thermodynamics and

plastic evolution laws.

24



Relaxed Configuration Constituative Laws

Kinematics in the Relaxed Configuration Stress and Power Quantities
¢ Elastic deformation gradient: ¢ Kirchhoff stress (weighted Cauchy stress):
F=F°F’P = F°=FFr! T = (det F)T

¢ Elastic right Cauchy-Green tensor: o Stress power split:

Ce=F"F° w=0f 4P
« Elastic Green-Lagrange strain tensor: W=T:E , &=(C°T):L”

e H €

B =2(C°-1)
Summary:

¢ Elastic kinematics and stress measures are formulated relative to the relaxed configuration, cleanly separating
plastic and elastic contributions.

¢ Stress Power Split allows Anand to cleanly isolate plastic dissipation from elastic storage.

* Green-Lagrange strain tensor E¢ is used because it symmetrically captures nonlinear elastic strain relative to the
relaxed configuration

¢ The right Cauchy-Green tensor C°¢ = FIFeis required as an intermediate to compute E¢ from the elastic
deformation gradient F'¢ without referencing spatial coordinates

25



Dissipation Separation: Elastic vs Plastic in Anand’s Model

Thermodynamic Separation

1. Start with Total Dissipation:

D=w—1>0

~

where & = T : B + (C°T) : L?
2. Split Stress Power:

b= P

with:
L] ¢

W =T: B
o P = (C°T): LP
(U8

3. Group Terms with

(@ —P)+aP >0

4. Apply Elastic Energy Consistency:

P -p=0 = @P>0

¢ Elastic deformations are recoverable and do

not cause entropy production.

¢ All dissipation stems from the plastic flow: w?.

¢ Plastic work increases entropy and governs

viscoplastic evolution.

Summary:
The stress power split ensures that the second law
is satisfied by assigning dissipation solely to
irreversible processes.

26



Reference Configuration

Framework in the Reference Configuration Key Equations in the Reference Frame
The free energy v is defined relative to the reference ¢ Free energy:
configuration.

State variables like E¢, 0, g, B, s are used as Y =19%(E6,3,B,3)
arguments of .

Stress is expressed using the second Piola—Kirchhoff
tensor S.

Dissipation inequality, stress—strain relations, and
evolution laws are all written in reference variables.
Mass density py from the reference configuration
normalizes all terms.

» Dissipation inequality:

b+ n8 —pg'S: B+ (o) 'y gy < 0]

¢ Constitutive relation:

(4
OE°

S =po

Summary:

¢ In the reference configuration, all energy storage, stress updates, and internal variable evolution are formulated
with reference-frame quantities for consistency and objectivity.



Thermodynamics

Thermodynamic Quantities Stress Power and Kirchhoft Stress
Free energy density: e Stress power per relaxed volume:
=e—0
==t w= A@v T:L
p

Reduced dissipation inequality:

[ +n6 —p'T:L+(p0) 'q-g<0

T = (det F)T| or mHAEvH
p

State variables:

{E°,0,9,B, s}  Decomposition of stress power:

with E° as elastic strain and s as internal resistance.

¢ Free energy and dissipation govern thermodynamic consistency.
e Stress power naturally splits into elastic and plastic parts.
Summary: ¢ Kirchhoff stress simplifies stress evolution accounting for volume changes.

¢ Weighted Cauchy (Kirchhoff) stress:
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POD Analysis of Turbulent Pipe Flow
M. Raba

Created: 2025-09-15 Mon 12:39
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1. Code Execution and Layout

30



1.1. Layout

1.b7.m
2. initSpectral.m

« reads in binary files, takes eg m-fft
3. — initEigs.m

« forms corrMat, finds eigenvalues

31



1.2. Layout 2

1. < initPod.m
« carries out POD calculations (quadrature, multiplication ggf betwen a®) according to Papers (Citriniti George 2000 for Classic POD,
Hellstrom Smits 2017 for Snapshot POD)
2. < timeReconstructFlow.m
« performs 2d reconstruction + plotSkmr (generates 1d radial graph)
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1.3. Important Switches
pipe = Pipe(); creates a Pipe Class. As the functions (above) are called, data is stored in sub-structs:

1. obj.Caseld - stores properties like Re, rotation number S, experimental flags such as quadrature (simpson/trapezoidal), number of gridpoints,
frequently called vectors (tMatr = 1,...,0.5)

2. obj.pod - eigen data, used for calculating POD

3. obj.solution - computed POD modes

4. obj.plt - plot configuration

33



2. Equations Used in Code Procedure

34



2.1. Classic POD Equations

The following equations are used in the above code.

\ S (k;msr, ) @™ (kymsr') ' dr’ = A (k; m) @™ (k; m; r)
+ -

S (k;m;r,7') = lim — u(k;m;r t)u* (kymsr',t) dt
T T Jo

Q@Qﬂ m;t) = \.:Q&SW ﬁ&@@, (k;m;r)r dr

r
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2.2. Classic POD Equations (Fixed)

[ 28 ot ) 2 6 o ) 0
N ———————— ——
Wi (ryr'sms f)

= A (m, 26" (rym; )
—— e

3O msf) 6 (ramsf)

an(m;t) = \ETE 7, )2 &% (m; ) dr
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2.3. Snapshot POD Equations

1 /7 .
lim — ur(k;m;r, SQE (k;m; t)dt

=00 T Jo

= AVAH:V (k;m; lyn:vQﬁ m)

R (k;m;t,t') = \c.Qﬁ m;r, t)yu’ (kym;r,t')rdr
T
H T
lim — [ up(k;m;r,t)a™* (k;m;t) dt

700 T Jo

= &) (k; m; r)A™ (k3 m).
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2.4. Reconstruction

The reconstruction is given by

a1 70 ~ 3 ay(t)py(6) =
=1

a(r,0,52) = q(r,0,52) + > Y oV (m; )8 (r;m; )

n=1m=0

Since the snapshot pod implementation is not error-free, the reconstruction can only be recovered by writing for factor > 0.

a(r,0,t;2) = §(r,0,t;2) + (factor ) > > ™ (m; )8 (r;m; 2)

n=1 m=0
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2.5. Reconstruction

In order to reconstruct in code, caseld.fluctuation = "oft”. This is incorrect. The necessary use of (factor 7y) is incorrect
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3. Derivation

To derive the questioned equation, consider the integral:

1 /7 .
I\. up (k;m; ﬁSth (k;m; t)dt.
T Jo

Substitute wy with its expansion:

1

I.\ M&%vAES;vQ:VAﬁjﬁwv QA:V.QA“‘SWS&.
T Jo ;
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3.1. 4 Derivation

Exchange the order of summation and integration, and apply orthogonality,

1 r7
MO%VQAM m;r) AI\ QSQ& m;t)
1 T Jo

" (k; m; S&V .
Due to the orthogonality, namely that o ) and a?) are uncorrelated

(@™ a®)y =A™,

all terms where | # n will vanish, and there remains only the [ = n term,

HA ,
Avw,i Qﬁsﬂl AI\ QA:VQ&:\E 393 Qﬂ:\E sv&v .
T Jo

This derivation assumes the normalization of modes and their orthogonality, along with the eigenvalue relationship to simplify the original integral into a

form that reveals the spatial structure ( 0‘@ ) ) of each mode scaled by its significance C@:J‘
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3.2. 6 Derivation

The cross-correlation tensor R is defined as R (k;m;t,¢') = [ u(k;m;r,t)u* (k;m;r,t') r dr. This tensor is now transformed from [3r x 3r'] to a
[t x t'] tensor. The n POD modes are then constructed as,
17 . .
lim — uy (k;m; ﬁ“vm?v (k;m; t)dt = @m;\ﬁ m; l&:uﬁﬁgv.

700 T o
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4. Result Comparison Classic/Snapshot
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4.2. Snapshot-Classic Comparison

Suapshot Rel1700 Velocity T POD for Rotation Number N = 0.0

Klassik Rel1700 Velocity W POD for Rotation Number N = 0.0
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Klassik Rel1700 Velocity W POD for Rotation Number N = 0.0

4.3. Klassik POD $=0.0

12 & AEO@GH

nl
10 10
8
a . : -
E £ 0 £
= o 8y .
0 < & i
-2
-4 -10 -10
0 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
1t 1r 1r
nd nj u6
10 10 10
£ 2
-10
0o 100 200 300 400 500 600 600 600

Lr

46



4.4. Klassik POD S=3.0

Klassik Rel1700 Velocity W POD for Rotation Number N = 3.0
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5.1. n=3 Classic

Klassik Rell700 Velocity W POD for Rotation Number NV = 3.0

o

4 5 6

7
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5.2. Analysis
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6. Reconstruction
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6.1. Reconstruction

Snapshot of u, fluctuation:
off £ A50aaq

szvaU Reconstruction, t=2using (n,m)=(400,50) modes, obf13
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