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Schematic Variants for Muffler Subcomponents

Part 1 — Chamber and Baffle Part 2 — Fluid domain

Part 3 — Fiberglass Absorbant (gold)

Part 4 — Showing perforates (aimed at Part 5 — Final Assembly View
fiberglass)




Transmission Loss (dB) at 20°C

Ansys Simulation

Simulated Transmission Loss (0—1000 Hz) by approximating muffler walls as fluid at 20 deg C

Muffler Transmission Loss vs Frequency at 20°C
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Figure: Transmission Loss curve of the muffler between 5 Hz and 1000 Hz at 20°C.
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Transmission Loss (dB)

Simlab Simulation

Simulated Transmission Loss (0—1000 Hz) Simlab model

Transmission Loss vs Frequency
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Sidlab and Ansys File Download Center

SIDLLAB Model ANSYS Simulation
¢ File: Mark3Sid.zip ¢ File: Mark-I-MDF-clearned-data.wbpz
e Created with: SIDLAB 5.1 ¢ Created with: ANSYS 2023 R2

e §J Download SIDLAB File e § Download ANSYS File


https://github.com/michaelraba/michaelraba.github.io/raw/main/assets/mikePres/510finalProj/files/Mark3Sid.zip
https://github.com/michaelraba/michaelraba.github.io/raw/main/assets/mikePres/510finalProj/files/Mark-I-MDF-clearned-data.wbpz
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Sidlab Components
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Sidlab Components

1. Pipe
2.QWT
3. Pipe
4. QWT
5. Pipe
6. QWT

7.Pipe

8. QWT
9. Pipe
10. QWT
11. Pipe



Insertion Loss (dB)
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Insertion Loss Explanation

Insertion Loss (IL) quantifies how
much sound is attenuated when a
muffler is added to the system.

General formula:

IL = 10logy, (1;"—“‘)

muffler

Because our data is already in
decibels (dB), this simplifies to:

IL = Powerpaseline (dB) — Powerpuffler (dB)
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Source Paper

Constitutive Equations for Hot-Working of

Metals e e
Author: Lallit Anand (1985)

. - - CONSTITUTIVE EQUATIONS FOR
DOI: 10.1016/0749-6419(85)90004-X T ORI OF METALE

One of the foundational papers in thermodynamically consistent LAk Asao

Massachusens Insipese of Technology

viscoplasticity modeling—especially significant in the context of Communicaied by Taeoder Lehmasa, Suhr Crversais Bochum)
metals subjected to large strains and high temperatures.

Adpitract — Eleviied p daformaiion p ¥ “kot-working,” i an impomant swep
during the manufaciuring of mos metal pr-:-dudu Coeavral 1 any Inmml'ul lulnk M a
Rotwpriing process is the use of appropriace raie and
mlﬂnbﬂ'lﬂn Inlmu.pwd. melm-hchc-l'mullrwfﬂfﬂlhb
of recoreery and recrystallizaiion and sirain rase and em-
wﬂunfmrlﬂ'lﬂ‘l I thi pager we devakop a set of phenamenslogical, istereal visighle
oype constiutive squalions deicribing the devaied demperature deformation of mesali. We us
a scalar and a symmeinic, irsselsis, second-eder tefaar ay internal virtbley which, in an averags
amnae, represand an Boiropic and en anistrepic revisance to plaslic Now alfered by the inter-
wal e of che macerial. In this theory, we consider small dlastic sirstches bt lirge plaitic defor-
-unn.l iwithin the limits of sextunngl of isoiropic maieriak. Special cases (within the

developed here} which should be suably for dnalyong Boi-working pro-

cesmes are indicaed.

L ANTRODUCTION

Hot-working is an Important processing step during the manufacture of approximately
more than eighty-five percent of all metal producss, The main features of hot-warking
are that metals are deformed into the desired shapes as temperatures in the range of
—{05 through —0.9 &, where 6, is the melting temperature in degrees Kelvin, and at
strain rates in the range of — 107 throusgh — 10%see. It is 1o be noted thar most hot-
working processes are more than mere shape-making operations; an important goal of
hot-working is to subject the wurtprm: to lpprupmbe thermo-mechanical ;rmcl:im
histories which will produce microstructures that optimize the mechanical properties of
the product.

The major quantities of metals and allays are hot-worked under interrupted non-
isathermal conditions, The principles of the physical metallurgy of such deformation
processing are now well recognized, e.g., Jowas er o, [1968)], SELLARs & McO TEGART
[1972], McChumes & Toxnas [1975], and Seiians [1578], During a deformation pass, the
stress is found to be a scrong function of the strain rate, lemperature, and the defect
and microstractural state of the material. The sirain-hardening produced by the defor-
malion tends to be counteracted by dynamic recovery processes, These recovery pro-
cegses resuln in @ rearrangement and annihilation of dislocations in such a manner that
s the strain in @ pass increasss, the dislocations tend to arrangs themselves imo sub-
grain walls, In some metals and alloys (especially those with a high stacking fault energy,
Fig. 25. 1100 aluminum state gradient specimens before and after testing. eg-. Al, eeFe and other ferritic alloys) dynamic recovery can balance strain-hardening
and an apparent steady state siress level can be achieved and maintained 1o large $rains
before fracture securs. [n other metals and alloys in which recovery is less rapld (sspe-
cially those mecals with low stacking fault energies, e.g., Mi, y-Fe and other austenitic

203
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Case Study: Wang (2001) Apply to Solder

Why Wang's Paper Matters
2228 | Applying Anand Model to
sse | eprosent ihe Viscoplastic » Applies Anand’s unified viscoplastic framework to model solder behavior.

Alloys

¢ Anand's model can be reduced and fitted from experiments.

¢ transition the theory into engineering-scale implementation.
¢ Targets solder joints in microelectronic packages (chip on PCB, soldered
connections).

J. Wilde

Chip (b)
Solder

PCB

Journal of Electronic Packaging Copyright © 2001 by ASME SEPTEMBER 2001, Vel. 123 / 247

Terms of Use:

Source: Wang, C. H. (2001). “A Unified
Creep—Plasticity Model for Solder Alloys.”
DOI: 10.1115/1.1371781


https://doi.org/10.1115/1.1371781

Comparing Anand Model Predictions at Two Strain Rates

Observed Behavior Key Insights from Wang (2001)
e Top Graph (a): ¢ =10 257! * “At lower strain rates, recovery dominates... the
e High strain rate — higher stress stress levels off early.”
* Recovery negligible — pronounced hardening e “At high strain rates, hardening dominates, and
« Bottom Graph (b): € =10 457! the stress grows continuously.”

e | ower strain rate — lower stress at same strain

« Recovery and creep effects more significant Anand’s model smoothly captures strain-rate and

temperature dependence of solder materials.

Model Accuracy: Lines = model prediction, X =
experimental data
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Main Equations of Wang’s Anand-Type Viscoplastic Model

Flow Rule (Plastic Strain Rate)

2 1/m
eP = Aexp (—}%1) [sinh(%)]

Plastic strain rate increases with stress and
temperature.

No explicit yield surface; flow occurs at all
nonzero stresses.

Deformation Resistance Saturation s*

el )
A P\ RT

Defines the steady-state value that s evolves
toward.
Depends on strain rate and temperature.

S |a

o S':ho‘l——
S*

S .
sign (1 - —) eP
S*

e Describes dynamic hardening and softening of
the material.

* s evolves depending on proximity to s* and flow
activity.

Note: Constants A, Q, m, j, ho, §,n, a are material-specific
and fitted to experimental creep/strain rate data.



Anand Viscoplasticity Constants for 60Sn40Pb

Image Reference Numerical Values

° = 5. 7 P
Values are from correspond to 60Sn40Pb solder So = 5.633 x 10" Pa

. =1 K
parameters used in Anand's model: . 3/51.490531%7 o1
e Sy: Initial deformation resistance « (=11
* m=0.303

@/ R: Activation energy over gas constant
A: Pre-exponential factor for flow rate

&: Multiplier of stress inside sinh

m: Strain rate sensitivity of stress

hy: Hardening/softening constant

s: Coefficient for saturation stress

n: Strain rate sensitivity of saturation

a: Strain rate sensitivity of hardening or
softening

ho = 2.6408 x 10° Pa
§ = 8.042 x 107 Pa

n = 0.0231

a=134

These constants match Wang's paper for modeling
60Sn40Pb viscoplasticity.



Forward Euler Explicit time integration scheme Pseudocode

Initialization

Material constants: A, Q/R, j,m, hy, s,n,a, E
Strain rate: €

Temperature set: {T;}

Set:e?(0) =0, s(0)=35

Time Evolution Loop

1. 5total(t) =ct

2. Otrial = E(stotalb_ 5p)

3. Compute z = £

4. Approximate sinh(z) (linearize if |z| < 1)
5.67 = Ae~9/ET(sinh(z))Y/™

Plastic Flow & Resistance Evolution

~ 2P i
b G = %eQ/RT

7.5 = ho|l — £|%sign (1 — %) &
8. Update: e?(t + At) = £P(t) + eP At
9. Update: s(t + At) = s(t) + sAt

10. Record (5totalvatrial)

Termination

* Stop when &g > Epax
* Ploto vse forall T}

Stress vs Inelastic Strain - 62Sn36Pb2Ag Alloy (Low Strain Rate le-5 1/s)

60 1
Temperature

— s5°C

-25°C
504 — 25°C
— 75°C
— 125°C

40 4

0.0 0.1 0.2 0.3 0.4 0.5
Inelastic Strain € (dimensionless)

0.6




Forward Euler Scheme for Anand Model

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

# Material constants for 62Sn36Pb2Ag solder alloy
A = 2.24e8 # 1/s

Q R = 11200 # K

j =13 # dimensionless
m=0.21 # dimensionless

ho = 1.62el0 # Pa

s0 = 8.47e7 # Pa

s hat = 8.47e7 # Pa

n = 0.0277 # dimensionless
a=1.7 # dimensionless

E = 5.2el0 # Pa (Elastic modulus)
# Temperatures in Kelvin

T C=[-55, -25, 25, 75, 125]

=

list = [T + 273.15 for T in T_C]

H*

Simulation parameters

strain rate = le-5 # 1/s

eps_total max = 0.6

t max = eps_total_max / strain_rate

time steps = 10000

t eval = np.linspace(0, t_max, time_steps)

# Define the ODE system
def (t, y, T):
ep_p, s =y
eps total = strain_rate * t
sigma trial = E * (eps_total - ep_p)
x = j * sigma_trial / s

if np.abs(x) < 0.01:
sinh_x = x

;inhix = np.sinh(np.clip(x, -30, 30))

sinh x = np.maximum(sinh_x, le-12)
dep p = A * np.exp(-Q_R / T) * sinh_x**(1/m)

s star = s _hat * (dep_p / A * np.exp(Q_R / T))**n
ds = h0 * np.abs(l - s/s_star)**a * np.sign(l - s/s_star) * dep_p

return [dep_p, ds]

# Plotting



Strain rate sensitivity of stress m

« Asm — 0, rate insensitive (yield)
« Asm — 1, small stress change causes big change in strain rate

Anand Flow Law: Varying $m$

cb

m = 0.05




Flow rule

Tensorial Flow Rule (directional form)

pr—e (3T
2 5

Equivalent Stress Definition

3
g=4/-T:T
2

Direction given by T".

Plastic Strain Rate (magnitude form)

é? = Aexp (—%) [sinh <§

I

Full Flow Rule with Hyperbolic Sine

o= e (-5 i 2]

Magnitude determined by hyperbolic sine based on &/s.

* T represents the effective shear stress computed from deviatoric stress.

Summary: Full flow = direction x magnitude.

M 3T
(5?

o= 1/%T’ : TV is the von Mises Equivalent stress, but is formally defined without yield point

).



Evolution Equation for the Stress

Stress Evolution Equation (Rate form of Hooke's Law) Material Tensors and Operators

L =2uI + (k — 24) 1 ® 1 — isotropic elasticity tensor
e LD represents how instantaneous strain rates
generate stresses according to the elastic material's
stiffness properties.

= u(0), k = k(0) — temperature-dependent moduli
IT = (3ak)1 — stress-temperature coupling

a = a(f) — thermal expansion coefficient

D = sym(Vv) — stretching tensor

W = skew(Vv) — spin tensor

I = fourth-order identity tensor

1 = second-order identity tensor

\Y% .
T =L[D - D] — 11§

(rate-form Hooke’s law for finite deformation
plasticity, with frame-indifference enforced through
the Jaumann rate.)

Jaumann Rate Definition

\Y% :
T=T-WT+TW

» Stress rate follows Jaumann derivative to ensure frame indifference.
e Elastic response governed by isotropic fourth-order tensor L.

Summary: * Thermal expansion introduces additional stress through TI6 .



Stress Evolution and Thermal Effects

Stress Evolution and Thermal Effects
In the stress evolution equation,
’%:L[D—Dp] — 119,
the term II6 represents the stress change that would occur

due to pure thermal expansion alone, without any mechanical
loading.

Why Subtract the Thermal Term?

Thermal expansion creates strain even without
external forces.

Without subtracting II4, the model would falsely
attribute thermal strain as mechanical stress.
Subtracting isolates the true mechanical response
from thermal effects.

B

increase of

- >

fixed connection

e Thermal expansion induces strain without force.
e Subtracting 19 ensures only mechanical strains generate stresses.
Summary: » This keeps the constitutive model physically accurate during heating and cooling.



Relaxed (Intermediate) Configuration

Context for the Relaxed Configuration

The relaxed configuration represents the material after
removing plastic deformations but before applying new
elastic deformations.

It is introduced to separate permanent plastic effects
from recoverable elastic effects.

All thermodynamic potentials, internal variables, and
evolution laws are defined relative to this frame.

The relaxed state provides a clean, natural reference
for measuring elastic strain E¢ and computing
dissipation.

Summary:

What Happens in the Relaxed Configuration?

The elastic deformation gradient F'¢ is measured from
the relaxed state to the current deformed state.
Elastic strain measures like C¢ and E*¢ are defined in
this configuration.

The Kirchhoff stress T is naturally associated with the
relaxed volume.

Plastic flow is accounted for separately through the
plastic velocity gradient L.

e The relaxed configuration isolates elastic responses cleanly, enabling proper definition of thermodynamics and

plastic evolution laws.



Relaxed Configuration Constituative Laws

Kinematics in the Relaxed Configuration Stress and Power Quantities
» Elastic deformation gradient: » Kirchhoff stress (weighted Cauchy stress):
F=F°FP = F°=FFP! T = (det F)T
e Elastic right Cauchy-Green tensor: e Stress power split:
Cce = FTFe W= & + &P
« Elastic Green—Lagrange strain tensor: W=T:E , o =(C°T):LF

Ee=_(Ct—1
~(C* 1)

Summary:

e Elastic kinematics and stress measures are formulated relative to the relaxed configuration, cleanly separating
plastic and elastic contributions.

e Stress Power Split allows Anand to cleanly isolate plastic dissipation from elastic storage.

e Green-Lagrange strain tensor E¢ is used because it symmetrically captures nonlinear elastic strain relative to the
relaxed configuration

e The right Cauchy-Green tensor C°¢ = FIFeis required as an intermediate to compute E° from the elastic
deformation gradient F'¢ without referencing spatial coordinates



Dissipation Separation: Elastic vs Plastic in Anand’s Model

Thermodynamic Separation

1. Start with Total Dissipation: ¢ Elastic deformations are recoverable and do

D—i—9 >0 not cause entropy production.

o R » All dissipation stems from the plastic flow: w?.
where w = T : E° + (C°T) : L?
2. Split Stress Power:

» Plastic work increases entropy and governs
viscoplastic evolution.
w=w+w
with: Summary:

e ' =T:E° The stress power split ensures that the second law
o« P — (Ce.i‘) CLP is satisfied by assigning dissipation solely to

. irreversible processes.
3. Group Terms with : P

(@ — )+ >0

4. Apply Elastic Energy Consistency:

- =0 = >0



Reference Configuration

Framework in the Reference Configuration Key Equations in the Reference Frame
The free energy v is defined relative to the reference * Free energy:
configuration. _
State variables like E¢, 0, g, B, s are used as Y =19%(E%,0,9,B,s)

arguments of .

Stress is expressed using the second Piola—Kirchhoff
tensor S.

Dissipation inequality, stress—strain relations, and
evolution laws are all written in reference variables.
Mass density py from the reference configuration
normalizes all terms. o

S = P05

e Dissipation inequality:

h+n0 —py'S: E+ (pob) 'qp-gr <0

¢ Constitutive relation:

Summary:

* In the reference configuration, all energy storage, stress updates, and internal variable evolution are formulated
with reference-frame quantities for consistency and objectivity.



Thermodynamics

Thermodynamic Quantities Stress Power and Kirchhoff Stress
* Free energy density: e Stress power per relaxed volume:
=e—0
o = (”—) T:L
P

* Reduced dissipation inequality:
* Weighted Cauchy (Kirchhoff) stress:

$+n6 —p 'T:L+(ph) 'q-g<0
= ~ £o

; . T = (det F)T| or T:<—>T
e State variables: ( ) p

{E°,0,9,B, s}  Decomposition of stress power:

with E¢ as elastic strain and s as internal resistance.

~ e

w=T:E, af =(C°T):L?

* Free energy and dissipation govern thermodynamic consistency.
e Stress power naturally splits into elastic and plastic parts.
Summary: e Kirchhoff stress simplifies stress evolution accounting for volume changes.



POD Analysis of Turbulent Pipe Flow
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1. Code Execution and Layout



1.1. Layout

1.b7.m
2. initSpectral.m

« reads in binary files, takes eg m-fft
3. — initEigs.m

» forms corrMat, finds eigenvalues



1.2. Layout 2

1. < initPod.m
« carries out POD calculations (quadrature, multiplication ggf betwen a®) according to Papers (Citriniti George 2000 for Classic POD,
Hellstrom Smits 2017 for Snapshot POD)
2. — timeReconstructFlow.m
« performs 2d reconstruction + plotSkmr (generates 1d radial graph)



1.3. Important Switches
pipe = Pipe(); creates a Pipe Class. As the functions (above) are called, data is stored in sub-structs:

1. obj.Caseld - stores properties like Re, rotation number S, experimental flags such as quadrature (simpson/trapezoidal), number of gridpoints,
frequently called vectors (rMatr = 1,...,0.5)

2. obj.pod - eigen data, used for calculating POD

3. obj.solution - computed POD modes

4. obj.plt - plot configuration



2. Equations Used in Code Procedure



2.1. Classic POD Equations

The following equations are used in the above code.

S (k;m;r,7') @™ (kym; ') ' dr' = A™ (k; m) @™ (ks m; )

,’J

1 T
S (k;m;r,r') = lim — u(k;m;r,t)u” (k;m;r',t)dt

T—00 T 0

o™ (k;m;t) = /u(k; m;r, )@ (k;m;r)r dr

T



2.2. Classic POD Equations (Fixed)

/ 7"1/251',.]‘ (T,Tl;m; f) Tll/2 ¢:(7l) (T'I; m; f) 7",1/2 d'l"l

Wi (ryr'sm; ~4(0)
]( f ¢j ¢ (r'smsf)

=\ (m, H)r 24" (rm; )

A i) 6" (ramsf)

an(m;t) = /u(m;r, t)r'/2&x (m;r)dr



2.3. Snapshot POD Equations

T

1 *
lim — ur (k; m; 7, t)a(") (k;m;t)dt

T—00 T 0

= <I>(Tn) (k; m; r))\(")(k; m)

R(kmit, ) = [ ullsmsr,ou’ (mir, )7 ds

1
lim — up (k;m;r, t)a™* (k;m;t) dt

T—0 T 0

— @ (k; m; )A™ (k; m).



2.4. Reconstruction

The reconstruction is given by

o) 16~ > ai(p,(6) =

q(r,0,t;2) = q(r,0,t;z) + Z Z a(")(m; t)q)(n) (rym; )

n=1 m=0

Since the snapshot pod implementation is not error-free, the reconstruction can only be recovered by writing for factor > 0.

q(r,0,t;2) = (r,0,t;z) + (factor 4) > _ > o (m; )" (r;m; z)

n=1 m=0



2.5. Reconstruction

In order to reconstruct in code, caseld.fluctuation = off’. This is incorrect. The necessary use of (factor -y) is incorrect



3. Derivation

To derive the questioned equation, consider the integral:

1 /7 .
—/ uT(k;m;r,t)a(n) (k;m;t)dt.
0

T

Substitute up with its expansion:

1 l n *
;/ (2; @&)(k;m;r)a(l)(k; m; t)) a™ (k;m; t)dt.

r
0



3.1. 4 Derivation
Exchange the order of summation and integration, and apply orthogonality,

1

Zcbg)(k;m;r) (—/ o (k; m; £)a ™" (k; m; t)dt> :
l 0

T

Due to the orthogonality, namely that a™ and a® are uncorrelated

(a™aP)y = A(W§

np

all terms where [ # n will vanish, and there remains only the [ = n term,

T

1 T *
<I>(Tn)(k;m;r) <—/ a(")(k; m; t)a(n) (k;m;t)dt) .
0

This derivation assumes the normalization of modes and their orthogonality, along with the eigenvalue relationship to simplify the original integral into a

form that reveals the spatial structure ( @&n) ) of each mode scaled by its significance ()\(")).



3.2. 6 Derivation

The cross-correlation tensor R is defined as R (k;m; ¢,t') = [ u(k;m;r,t)u* (k;m;r,t') r dr. This tensor is now transformed from [3r x 3r'] toa
[t x '] tensor. The n POD modes are then constructed as,
1 /7 - n
lim — ug (k;m; 7, £)a™ (k;m;t)dt = Q(T)(k;m;r))\(n)(k; m).

=00 T Jo



4. Result Comparison Classic/Snapshot
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4.2. Snapshot-Classic Comparison

Klassik Rel1700 Velocity 1% POD for Rotation Number N = (.0
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4.3. Klassik POD S=0.0

Klassik Rel1700 Velocity W POD for Rotation Number N = (0.0
n2 2 AEOQQG

nl
10

10

i .
{0 (1))

E N o N B o o

0 100 200 300 400 500 600

n3




Klassik Rell700 Velocity W POD for Rotation Number N = 3.0
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1-r
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4.4. Klassik POD S=3.0
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5. Energy n=0 Classic

Klassik Rell1700 Velocity W POD for Rotation Number N = (0.0
I I I




5.1. n=3 Classic

Klassik Rel1700 Velocity W POD for Rotation Number N = 3.0
109
I I I




5.2. Analysis



6. Reconstruction



6.1. Reconstruction

Snapshot of u, fluctuation:

&, 5EMe QG REGPSO_D Reconstruction, t=2usi {n,m)=(400,50) modes, obf13
0.4t e
0.3}
1
0.2
10.8 0.1 10.8
d06

-0.2 1

-0.31

-0.4

-0.5




