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Source Paper

Constitutive Equations for Hot-Working of
Metals

Author: Lallit Anand (1985)
DOI: 10.1016/0749-6419(85)90004-X
One of the foundational papers in thermodynamically consistent

viscoplasticity modeling—especially significant in the context of
metals subjected to large strains and high temperatures.

Fig. 25. 1100 aluminum state gradient specimens before and after testing.
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Case Study: Wang (2001) Apply to Solder

Why Wang's Paper M

Applying Anand Model to

Bgft:f:l:?ituw%l\s’lllzt\:r[ilg:ans}hscuIder e Applies Anand’s unified viscoplastic framewc

Alloys

¢ Anand's model can be reduced and fitted fro
¢ transition the theory into engineering-scale il

o Targets solder joints in microelectronic pack:

connections).
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Source: Wang, C. H. (2001). “A Unified
Creep—Plasticity Model for Solder Alloys.”
DOI: 10.1115/1.1371781



Comparing Anand Model Predictions at Two Strain Rates

Observed Behavior Key Insights
« Top Graph (a): ¢ =10 257! * “At lower strain ra
e High strain rate — higher stress stress levels off e:
* Recovery negligible — pronounced hardening e “At high strain rate
e Bottom Graph (b): € = 10~*s™! the stress grows ¢

e Lower strain rate — lower stress at same strain

» Recovery and creep effects more significant Anand’s model smootf

temperature depend
Model Accuracy: Lines = model prediction, X =
experimental data
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Main Equations of Wang’s Anand-Type Viscoplastic Model

Flow Rule (Plastic Strain Rate)

o 1/m
eP = Aexp <_R;Cf21"> [sinh(%)]

Plastic strain rate increases with stress and
temperature.

No explicit yield surface; flow occurs at all
nonzero stresses.

Deformation Resistance Saturation s*

=i(ae(a))
s =S Iexp ﬁ

Defines the steady-state value that s evolves
toward.
Depends on strain rate and temperature.

Evolution of Defc

° é:hol—

e Describes dynami
the material.

e s evolves dependi
activity.

Note: Constants A, @, m, j
and fitted to experime



Anand Viscoplasticity Constants for 60Sn40Pb

Image Reference Numer

e S =

Values are from correspond to 60Sn40Pb solder . QO/R
parameters used in Anand's model: . A

* Sy Initial deformation resistance ’ 5__]

* @Q/R: Activation energy over gas constant Zz —

* A: Pre-exponential factor for flow rate AO__‘

e & Multiplier of stress inside sinh * 8=

e m: Strain rate sensitivity of stress n= '
LI —

hy: Hardening/softening constant

s: Coefficient for saturation stress

n: Strain rate sensitivity of saturation

a: Strain rate sensitivity of hardening or
softening

These constants match
60Sn40Pb



Forward Euler Explicit time integration scheme Pseudocode

Initialization Plastic Flow & |

Material constants: A, Q/R, j,m, hy, §,n,a, E Ao g(é_”e'
Strain rate: € 4
Temperature set: {T;}
Set: eP(0) =0, s(0)=s

7.8 =holl —
8. Update: £P(
9. Update: s(t

Time Evolution Loop 10. Record (g4
1 giotal(t) = €t Tert
A O'trial — E(gtotal - 5p)

i e Stop v

3. Compute z = = . Ploto
4, Approximate sinh(z) (linearize if |z| < 1)

5- ép = AeiQ/RT(Sinh(w))l/m Stress vs Inelastic Strain - 62

e

Inelastic



Forward Euler Scheme for Anand Model

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

# Material constants for 62Sn36Pb2Ag solder alloy
A = 2.24e8 #1/s

Q R = 11200 #K

j =13 # dimensionless
m=0.21 # dimensionless

ho 1.62e10 # Pa

sO = 8.47e7 # Pa

s hat = 8.47e7 # Pa

n 0.0277 # dimensionless

a 1.7 # dimensionless

E = 5.2el0 # Pa (Elastic modulus)

# Temperatures in Kelvin
TC=[-55, -25, 25, 75, 125]
T list = [T + 273.15 for T in T_C]

# Simulation parameters

strain_rate = le-5 # 1/s

eps_total max = 0.6

t max = eps_total _max / strain_rate

time steps = 10000

t eval = np.linspace(, t_max, time steps)

# Define the ODE system
def system(t, y, T):
epp, s=y
eps_total = strain_rate * t
sigma trial = E * (eps_total - ep_p)
x = j * sigma_trial / s
if np.abs(x) < 0.01:
sinh x = x
else:
sinh_x = np.sinh(np.clip(x, -30, 30))

sinh x = np.maximum(sinh_x, le-12)
dep p = A * np.exp(-Q_R / T) * sinh_x**(1/m)

s star = s_hat * (dep_p / A * np.exp(Q_R / T))**n
ds = hO * np.abs(1l - s/s_star)**a * np.sign(l - s/s_star) * dep p

return [dep_p, ds]

# Plotting



Strain rate sensitivity of stress m

« Asm — 0, rate insensitive (yield)
« Asm — 1, small stress change causes big change in strain rate

Anand Flow Law: Varying $m$

ek



Flow rule

Tensorial Flow Rule (directional form) Plastic Strain R
. 3T (
D?P = ¢? (§?> ép:AeXp(—}
Equivalent Stress Definition Full Flow Rule
o= iT' o
2

D? = Aexp (—%) |

 Direction given by T'.
Magnitude determined by hyperbolic sine based on /s.
T represents the effective shear stress computed from deviatoric stre

* g = 1/%T’ : TV is the von Mises Equivalent stress, but is formally de
Full flow = direction x magnitude.

Summary:



Evolution Equation for the Stress

Stress Evolution Equation (Rate form of Hooke's Law) Material Tens

L=2ul+ (n—%,u)
e LD represents how i
generate stresses ac
stiffness properties.

p=p(0), k= r(0) —
IT = (3ak)1 — stres
a = a(f) — thermal
D = sym(Vv) — str
W = skew(Vv) —s
I = fourth-order ident
1 = second-order ide

\ .
T =L[D — D?| — II¢

(rate-form Hooke’s law for finite deformation
plasticity, with frame-indifference enforced through
the Jaumann rate.)

Jaumann Rate Definition

v oo
T=T-WT+TW

e Stress rate follows Jaumann derivative to ensure frame |
» Elastic response governed by isotropic fourth-order tens

Summary: * Thermal expansion introduces additional stress through



Stress Evolution and Thermal Effects

Stress Evolution and Thermal Effects Why Subtract
In the stress evolution equation, * Thermal expansion ¢
external forces.
v , - :
T =L [D - D?] — 4, Without subtracting I

attribute thermal strai
e Subtracting isolates t
from thermal effects.

tem

the term II6 represents the stress change that would occur
due to pure thermal expansion alone, without any mechanical
loading.

fixed connection

e Thermal expansion induces strain without force.
e Subtracting II) ensures only mechanical strains generate stre
Summary: * This keeps the constitutive model physically accurate during he



Relaxed (Intermediate) Configuration

Context for the Relaxed Configuration

The relaxed configuration represents the material after
removing plastic deformations but before applying new
elastic deformations.

It is introduced to separate permanent plastic effects
from recoverable elastic effects.

All thermodynamic potentials, internal variables, and
evolution laws are defined relative to this frame.

The relaxed state provides a clean, natural reference
for measuring elastic strain £ and computing
dissipation.

Summary:

What Happens in the

The elastic deformatic
the relaxed state to th
Elastic strain measure
this configuration.
The Kirchhoff stress ]
relaxed volume.
Plastic flow is accoun
plastic velocity gradie

e The relaxed configuration isolates elastic responses cleanly, enabling proper definitio

plastic evolution laws.



Relaxed Configuration Constituative Laws
Kinematics in the Relaxed Configuration Stress and F

» Elastic deformation gradient:  Kirchhoff stres:

F=F°FP = F°=FFfpr1 "

 Elastic right Cauchy-Green tensor: e Stress power s
C°¢ = FFe
e Elastic Green—Lagrange strain tensor: W=T:F
1

Summary:

¢ Elastic kinematics and stress measures are formulated relative to the relaxed configu
plastic and elastic contributions.

» Stress Power Split allows Anand to cleanly isolate plastic dissipation from elastic stor:

* Green-Lagrange strain tensor E¢ is used because it symmetrically captures nonlinea
relaxed configuration

e The right Cauchy-Green tensor C¢ = FYFeis required as an intermediate to compu
deformation gradient F'¢ without referencing spatial coordinates



Dissipation Separation:

Thermodynamic Separation

1. Start with Total Dissipation:
D=w—1>0

where o = T : E° + (C°T) : L”
2. Split Stress Power:

b= @ +aP

with:
e« 0 =T:E
.
3. Group Terms with ¢:

(&° — ) + 6P >0

4. Apply Elastic Energy Consistency:

W—h=0 = G >0

Elastic vs Plastic in Anand’s Model

e Elastic deformat

not cause entropy
¢ All dissipation st
¢ Plastic work incre

viscoplastic evolut

Su

The stress power split
is satisfied by assig
irreversit



Reference Configuration

Framework in the Reference Configuration Key Equations in
The free energy 1) is defined relative to the reference * Free energy:
configuration. -

State variables like E¢, 0, g, B, s are used as ¥ =
arguments of 4.

Stress is expressed using the second Piola—Kirchhoff * Dissipation in
tensor S. T
Dissipation inequality, stress—strain relations, and (Ym0 — Py

evolution laws are all written in reference variables.
Mass density py from the reference configuration
normalizes all terms.

e Constitutive re

Summary:

* In the reference configuration, all energy storage, stress updates, and internal variabl
with reference-frame quantities for consistency and objectivity.



Thermodynamics
Thermodynamic Quantities Stress Power ai

* Free energy density: e Stress powe

E

* Reduced dissipation inequality:
e Weighted C:

P+m0 —p 'T:L+ (ph) 'q-g<0

T = (det F

e State variables:

{E°,0,9,B, s}  Decomposit

with E€ as elastic strain and s as internal resistance.

* Free energy and dissipation govern thermodynamic consist
e Stress power naturally splits into elastic and plastic parts.
Summary:  Kirchhoff stress simplifies stress evolution accounting for vc



