nand-Type Viscoplastic Model

Evolution of Deformation Resistance \boldsymbol{s}

$$deta(rac{s}{s}-1)$$
 usis $\left|rac{s}{s}-1
ight|_0 h=\dot{s}$

- Describes dynamic hardening and softening of
- activity. $\bullet \ \ s$ evolves depending on proximity to s^* and flow

and fitted to experimental creep/strain rate data. Note: Constants $A,Q,m,\dot{l},h_0,\dot{s},n,a$ are material-specific

Michael Raba: Mechanical Engineering Portfolio 2025

Main Equations of Wang's An

Flow Rule (Plastic Strain Rate)

$$\dot{\varepsilon}^{\,p} = A \exp\biggl(-\frac{Q}{RT} \biggr) \biggl[\sinh\biggl(\frac{j\sigma}{s} \biggr) \biggr]^{1/m}$$

- Plastic strain rate increases with stress and temperature.
- No explicit yield surface; flow occurs at all nonzero stresses.

Deformation Resistance Saturation s^{*}

$$\label{eq:spectrum} \bullet \qquad \qquad s^* = \hat{s} \left(\frac{\dot{\varepsilon}^p}{A} \mathrm{exp} \bigg(\frac{Q}{RT} \bigg) \right)^n$$

- Defines the steady-state value that s evolves toward
- Depends on strain rate and temperature.

Key Insights from Wang (2001)

- $\bullet\,$ "At lower strain rates, recovery dominates... the
- stress levels off early." At high strain rates, hardening dominates, and the stress grows continuously."

Anand's model smoothly captures strain-rate and

Anand s model smootnly captures strain-rate and temperature dependence of solder materials.

8

${\bf Abstract}$

This book is a compilation of projects of Michael Raba and can be found at: https://michaelraba.github.io/talks/

Comparing Anand Model Pro

Observed Behavior

- Top Graph (a): $\dot{\varepsilon}=10^{-2}\,\mathrm{s}^{-1}$ High strain rate \rightarrow higher stress Recovery negligible \rightarrow pronounced hardening Bottom Graph (b): $\dot{\varepsilon}=10^{-4}\,\mathrm{s}^{-1}$
- Lower strain rate \rightarrow lower stress at same strain
- Recovery and creep effects more significant

Model Accuracy: Lines = model prediction, X = experimental data

001) Apply to Solder

Why Wang's Paper Matters

isnd's unified viscoplastic framework to model solder behavior. indel can be reduced and fitted from experiments. The theory into engineering-scale implementation. In a theory into engineering-scale implementation. In a soldered in microelectronic packages (chip on PCB, soldered is).

J . 8

Table of Contents

Source: Wang, C. H. (2001). "A Unified Creep–Plasticity Model for Solder Alloys." DOI: 10.1115/1.1371781 Case Study: Wang (2

- Applies An
- Anand's m
- transition t
- Targets so connection

DO. + DO.C2 28-etha-estto DO. + DO.C2 28-etha-estto

2891 J.I.S.-CIS., eq. J. JoP. refoliable by Power benefit and brother. A.2.U set of brother.

HOT-WORKING OF METALS

LALLIT ANAND

Massachusetts Institute of Technology

L INTRODUCTION

Horeworking is an important processing step durings the manufacture of approximately biot-working is an important processing step durings gred purings from the interastic of the care of the case of

Anand Model: Viscoelastoplasticity

Michael Raba, MSc Candida

Created: 2025-0

and its Application to Solder Joints

ite at University of Kentucky

)4-29 Tue 06:39

2

Source

Constitutive Equations for Hot-Working of Metals

Author: Lallit Anand (1985)

DOI: 10.1016/0749-6419(85)90004-X

One of the foundational papers in thermodynamically consistent viscoplasticity modeling—especially significant in the context of metals subjected to large strains and high temperatures.

Fig. 25. 1100 aluminum state gradient specimens before and after testing.

iate) Configuration

What Happens in the Relaxed Configuration?

- the relaxed state to the current deformed state. $\bullet~$ The elastic deformation gradient $F^{\rm e}$ is measured from
- Elastic strain measures like $C^{\rm e}$ and $E^{\rm e}$ are defined in
- The Kirchhoff stress $\widetilde{\mathbf{T}}$ is naturally associated with the this configuration.
- Plastic flow is accounted for separately through the relaxed volume.
- plastic velocity gradient $\mathbf{L}^{p}.$

ացւλ։

cleanly, enabling proper definition of thermodynamics and

Anand Viscoplasticity C

Image Reference

parameters used in Anand's model: Values are from correspond to 60Sn40Pb solder

- $\bullet \ \ S_0$: Initial deformation resistance
- $\bullet \ Q/R$. Activation energy over gas constant
- $\bullet \ m$: Strain rate sensitivity of stress • §: Multiplier of stress inside sinh
- ullet Hardening/softening constant
- $\hat{s}: \mbox{Coefficient for saturation stress}$
- $\bullet \ n$: Strain rate sensitivity of saturation
- or Strain rate sensitivity of hardening or $\,\bullet\,$
- gninethos

Constants for 60Sn40Pb

Numerical Values

- $S_0=5.633 imes10^7~{
 m Pa}$
- Q/R = 10830 K
- $\bullet \ \ A = 1.49 \times 10^7 \ \mathrm{s}^{-1}$
- $\xi = 11$
- m = 0.303
- $h_0=2.6408 imes10^9~ ext{Pa}$
- $\hat{s} = 8.042 \times 10^7 \, {
 m Pa}$
- n = 0.0231
- a = 1.34

These constants match Wang's paper for modeling 60Sn40Pb viscoplasticity.

Relaxed (Intermed

Context for the Relaxed Configuration

- The relaxed configuration represents the material after removing plastic deformations but before applying new elastic deformations.
- It is introduced to separate permanent plastic effects from recoverable elastic effects.
- All thermodynamic potentials, internal variables, and evolution laws are defined relative to this frame.
- The relaxed state provides a clean, natural reference for measuring elastic strain $E^{\it e}$ and computing dissipation.

Sumi

The relaxed configuration isolates elastic responses of plastic evolution laws.

Why Subtract the Thermal Term?

- Thermal expansion creates strain even without
- external forces.
- attribute thermal strain as mechanical stress. • Without subtracting $\Pi\dot{\theta},$ the model would falsely
- from thermal effects. • Subtracting isolates the true mechanical response

del physically accurate during heating and cooling. nechanical strains generate stresses. rain without force.

Forward Euler Explicit time ir

Initialization

- Material constants: $A,Q/R,f,m,h_0,\hat{s},n,a,E$
- Strain rate: €
- ullet Temperature set: $\{T_i\}$
- $\hat{s}=(0)s$, $0=(0)^q \hat{s}$; set:

Time Evolution Loop

1.
$$\varepsilon_{\mathrm{total}}(t) = \dot{\varepsilon}t$$

2. $\sigma_{\mathrm{trial}} = \mathbb{E}(\varepsilon_{\mathrm{total}} - \varepsilon^p)$
3. Compute $x = \frac{j\sigma}{s}$
4. Approximate $\sin h(x)$ (linearize if $|x| \ll 1$)
5. $\varepsilon^p = A \varepsilon^{-Q/PT} (\sin h(x))^{1/m}$
5. $\varepsilon^p = A \varepsilon^{-Q/PT} (\sin h(x))$

Plastic Flow & Resistance Evolution

6.
$$s^* = \hat{s} \left(\frac{\dot{\varepsilon}^p}{4} e^{Q/RT} \right)^n$$

7.
$$\dot{s} = h_0 |1 - \frac{s}{c^*}|^a \text{sign} \left(1 - \frac{s}{c^*}\right) \dot{c}^p$$

$$\begin{aligned} &6.\ s^* = \hat{s} \left(\frac{\dot{\varepsilon}^p}{A} e^{Q/RT}\right)^n \\ &7.\ \dot{s} = h_0 \big| 1 - \frac{s}{s^*} \big|^a \mathrm{sign} \left(1 - \frac{s}{s^*}\right) \dot{\varepsilon}^p \\ &8.\ \mathsf{Update:}\ \varepsilon^p(t + \Delta t) = \varepsilon^p(t) + \dot{\varepsilon}^p \Delta t \end{aligned}$$

9. Update:
$$s(t+\Delta t)=s(t)+\dot{s}\Delta t$$

10. Record $(arepsilon_{ ext{total}}, \sigma_{ ext{trial}})$

Termination

- Stop when $arepsilon_{\mathrm{total}} \geq arepsilon_{\mathrm{max}}$
- Plot σ vs ε for all T_i

Stress Evolution ar

Stress Evolution and Thermal Effects

In the stress evolution equation,

$$\overset{
abla}{\mathbf{T}}=\mathbb{L}\left[\mathbf{D}-\mathbf{D}^{p}
ight]-\mathbf{\Pi}\dot{ heta},$$

the term $\mathbf{\Pi}\dot{\theta}$ represents the stress change that would occur due to pure thermal expansion alone, without any mechanical loading.

· Thermal expansion induces str

• Subtracting $\Pi\dot{\theta}$ ensures only r

Summary:

• This keeps the constitutive mo

Material Tensors and Operators

- $\mathbb{L}=\Omega + I_{\mu} I + I_{\mu} I_{\mu} = I_{\mu} I_{\mu} I_{\mu}$
- \bullet $\mathbb{L}\mathbf{D}$ represents how instantaneous strain rates

generate stresses according to the elastic material's

stiffness properties.

- $\mu=\mu(\theta), \ \kappa=\kappa(\theta)$ temperature-dependent moduli
- $\Pi = (3\alpha\kappa) 1$ stress-temperature coupling
- $\alpha = \alpha(\theta)$ thermal expansion coefficient
- $\mathbf{D} = \operatorname{sym}(\nabla \mathbf{v})$ stretching tensor $\mathbf{W} = \operatorname{skew}(\nabla \mathbf{v})$ spin tensor
- I = fourth-order identity tensor
- I = second-order identity tensor

nann derivative to ensure frame indifference. led by isotropic fourth-order tensor \mathbb{L}_{\cdot} , anches additional stress through $\Pi\dot{\theta}_{\cdot}$

2<mark>2</mark>

Forward Euler Scher

```
insport astpoint solve, and the part of th
```

ne for Anand Model

16

Evolution Equati

Stress Evolution Equation (Rate form of Hooke's Law)

$$\overset{
abla}{\mathbf{T}}=\mathbb{L}\left[\mathbf{D}-\mathbf{D}^{p}
ight]-\mathbf{\Pi}\dot{ heta}$$

(rate-form Hooke's law for finite deformation plasticity, with frame-indifference enforced through the Jaumann rate.)

Jaumann Rate Definition

$$\overset{\nabla}{\mathbf{T}}=\dot{\mathbf{T}}-\mathbf{W}\mathbf{T}+\mathbf{T}\mathbf{W}$$

- Stress rate follows Jaun
- Elastic response govern

Summary:

· Thermal expansion intro

Plastic Strain Rate (magnitude form)

$$e^{m/1} \left[\left(rac{ar{o}}{s}
ight)
ight] dnis \left[\left(rac{ar{O}}{ heta H} -
ight)
ight] dx
ight) = {}^{q} \dot{s}$$

Full Flow Rule with Hyperbolic Sine

$$\mathbf{Q}^{p} = A \exp \left(-rac{\Omega}{R}
ight) \left[\sin \left(rac{\delta}{s}
ight)^{m/1} \left[rac{\Omega}{s}
ight]
ight]$$

$$^{2/I} \biggl\{ (^{2 \lambda} \widetilde{\mathbf{T}}) \mathrm{rd} \frac{1}{\zeta} \biggr\} = \bar{\tau} \quad , \left(\frac{^{1} \widetilde{\mathbf{T}}}{\bar{\tau} \zeta} \right) ^{q} \dot{\gamma} =$$

uivalent stress, but is formally defined without yield point ses computed from deviatoric stress. $\cdot s/ar{o}$ no based ənis :

Strain rate sensit

tivity of stress m

(yield)

ange causes big change in strain rate

Flow

Tensorial Flow Rule (directional form)

$$\mathbf{D}^p = \dot{\epsilon}^p \left(rac{3}{2}rac{\mathbf{T}'}{ar{\sigma}}
ight)$$

Equivalent Stress Definition

$$ar{\sigma} = \sqrt{rac{3}{2} \mathbf{T}' : \mathbf{T}'}$$

• Direction given by \mathbf{T}' .

• Magnitude determined by hyperbolic • $\bar{\tau}$ represents the effective shear stre

• $ar{\sigma} = \sqrt{rac{3}{2} {f T}': {f T}'}$ is the von Mises Eq

Summary:

• Full flow = direction × magnitude.

Muffer Subcomponents

nismob biul

Part 3 — Fiberglass Absorbant (gold)

Weit 5 — Final Assembly View

45

Relaxed Configuratio

Kinematics in the Relaxed Configuration

• Elastic deformation gradient:

$$E = E_{\rm c} \, E_{
m b} \quad \Rightarrow \quad E_{
m c} = E E_{
m b-1}$$

Elastic right Cauchy-Green tensor:

$$C_{\rm e} = E_{\rm e_L} E_{\rm e}$$

• Elastic Green-Lagrange strain tensor:

$$E_{
m e}=rac{5}{1}({
m C}_{
m e}-{
m I})$$

ung

- plastic and elastic contributions. Elastic kinematics and stress measures are formulate
- Stress Power Split allows Anand to cleanly isolate pla
- relaxed configuration
- The right Cauchy-Green tensor $\mathrm{C}^{\mathrm{e}} = \mathrm{F}^{\mathrm{e}^{\mathrm{T}}}\mathrm{F}^{\mathrm{e}}$ is requii
- deformation gradient $F^{\rm e}$ without referencing spatial c

n Constituative Laws

Stress and Power Quantities

Kirchhoff stress (weighted Cauchy stress):

$$\widetilde{\mathbf{T}} = (\det F)\mathbf{T}$$

• Stress power split:

$$\dot{\omega}=\dot{\omega}^e+\dot{\omega}^p$$

$$\dot{\omega}^e = \widetilde{f T} : \dot{E}^e \quad , \quad \dot{\omega}^p = (C^e \widetilde{f T}) : {f L}^p$$

mary:

ed relative to the relaxed configuration, cleanly separating

astic dissipation from elastic storage. symmetrically captures nonlinear elastic strain relative to the

 red as an intermediate to compute E^e from the elastic $\operatorname{soordinates}$

28

Schematic Variants for

Part 2 — FI

Part 4 — Showing perforates (aimed at fiberglass)

snoisn

07

Dissipation Separation: Elasti

Thermodynamic Separation

 \uparrow . Start with Total Dissipation:

$$0 \leq \dot{\psi} - \dot{\omega} = \mathcal{Q}$$

where
$$\dot{\omega}=\hat{\mathbf{T}}:\dot{\mathbf{E}}^{\mathrm{e}}+(\mathbf{C}^{\mathrm{e}}\hat{\mathbf{T}})=\mathbf{L}^{p}$$

2. Split Stress Power:

$$\dot{\varpi}=\dot{\varpi}_{\rm e}+\dot{\varpi}_{\rm b}$$

:dJiw

$${}^{\circ}\mathbf{\dot{z}}:\widehat{\mathbf{T}}={}^{\circ}\omega$$
 $ullet$

• $\dot{\boldsymbol{\varphi}}_b = (\mathbf{C}_e \dot{\mathbf{L}}) : \mathbf{\Gamma}_b$

: ψ thiw small quora . §

$$(\dot{arphi}_{arepsilon}-\dot{\psi})+\dot{arphi}_{b}\geq0$$

4. Apply Elastic Energy Consistency:

$$\dot{\omega}_{\varepsilon} - \dot{\psi} = 0 \quad \Rightarrow \quad \dot{\omega}_b \geq 0$$

c vs Plastic in Anand's Model

Key Physical Insights

- Elastic deformations are recoverable and do not cause entropy production.
- All dissipation stems from the plastic flow: $\dot{\omega}^p$.
- Plastic work increases entropy and governs viscoplastic evolution.

Summary:

The stress power split ensures that the second law is satisfied by assigning dissipation solely to irreversible processes.

30

Dimei

38

Reference C

Framework in the Reference Configuration

prefer edt of eviteler hegiteb si // vonege eert edT

- \bullet The free energy ψ is defined relative to the reference
- configuration. State variables like $E^e, \theta, \bar{g}, \bar{\mathbf{B}}, s$ are used as
- arguments of $\psi.$ Stress is expressed using the second Piola–Kirchhoff
- tensor S.

 Dissipation inequality, stress–strain relations, and
- evolution laws are all written in reference variables. • Mass density ρ_0 from the reference configuration
- normalizes all terms.

ung

• In the reference configuration, all energy storage, stre with reference-frame quantities for consistency and o

onfiguration

Key Equations in the Reference Frame

• Free energy:

$$\boxed{\psi = \psi(E^e, heta, ar{g}, ar{\mathbf{B}}, s)}$$

Dissipation inequality:

$$\left[\dot{\psi} + \eta\dot{ heta} -
ho_0^{-1}\mathbf{S}: \dot{E} + (
ho_0 heta)^{-1}\mathbf{q}_0\cdot\mathbf{g}_0 \leq 0
ight]$$

Constitutive relation:

$${f S}=
ho_0rac{\partial \psi}{\partial E^e}$$

mary:

ess updates, and internal variable evolution are formulated bjectivity.

Multicomponent Muff

Muffler System

tte at University of Kentucky

04:40 beW 82-2

Дрегтос

36

Thermodynamic Quantities

• Free energy density:

$$u_{\theta} - \mathfrak{d} = \psi$$

$$u_{\theta} - \mathfrak{d} = \phi$$

$$u_{\theta} - \vartheta = \phi$$

Reduced dissipation inequality:

$$\boxed{0 \geq \mathbf{g} \cdot \mathbf{p}^{1-}(\theta \mathbf{q}) + \mathbf{J} : \mathbf{T}^{1-}\mathbf{q} - \dot{\theta}\mathbf{p} + \dot{\psi}}$$

• State variables:

$$\{E^{e}, \bar{\mathbf{G}}, \bar{\theta}, \bar{\theta}, s\}$$

with E^{ε} as elastic strain and ${\it s}$ as internal resistance.

Free energy and dissipation

 Kirchhoff stress simplifies s Stress power naturally split

շռաացւλ։

lynamics

Stress Power and Kirchhoff Stress

• Stress power per relaxed volume:

$$\dot{\omega} = \left(\frac{
ho_0}{
ho}\right) \mathbf{T} : \mathbf{L}$$

• Weighted Cauchy (Kirchhoff) stress:

$$\left[\widetilde{\mathbf{T}} = (\det F) \mathbf{T} \right] \quad ext{or} \quad \left[\widetilde{\mathbf{T}} = \left(rac{
ho_0}{
ho}
ight) \mathbf{T} \right]$$

• Decomposition of stress power:

$$egin{aligned} \dot{\omega} &= \dot{\omega}^e + \dot{\omega}^p \ \end{aligned}$$
 $\dot{\omega}^e &= \mathbf{\widetilde{T}} : \dot{E}^e, \quad \dot{\omega}^p = (C^e \mathbf{\widetilde{T}}) : \mathbf{L}^p \ \end{aligned}$

n govern thermodynamic consistency. s into elastic and plastic parts. tress evolution accounting for volume changes.

Multichamber 1

Michael Raba, MSc Candida

Created: 2025-0

89

Figure: Transmission Loss curve of the m

1. Code Execut

urbulent Pipe Flow

Zaba

95:50 beW 01-9

iS dslmiS

99

Simulated Transmission Loss

97

POD Analysis of T

M. F

Created: 2025-0

Viley; 2014. ISBN: 9781118443125.

Viley; 2014. ISBN: 9781118443125.

1.1017/9781108840750

ad duct acoustics and were consulted for system modeling, d transmission loss analysis.

iH sysnA bns dslbiS

79

SIDLAB Model

• File: Mark3Sid.zip

• Created with: SIDLAB 5.1

• Download SIDLAB File

le Download Center

ANSYS Simulation

- File: Mark-I-MDF-clearned-data.wbpz
- Created with: ANSYS 2023 R2
- | Download ANSYS File

48

Refer

Cited

- Munjal ML. Acoustics of Ducts and Mufflers. 2nd ed. V https://doi.org/10.1002/9781118443125
- Dokumacı E. Duct Acoustics: Fundamentals and Appli Press; 2021. ISBN: 9781108840750. https://doi.org/10

Note: These references are foundational texts in muffler at schematic development, and

Insertion Loss Explanation

muffler is added to the system. Insertion Loss (IL) quantifies how much sound is attenuated when a

General formula:

$\mathrm{IL} = 10 \log_{10} \left(\frac{P_{\mathrm{baseline}}}{P_{\mathrm{muffer}}} \right)$

Because our data is already in decibels (dB), this simplifies to:

$$IL = Power_{baseline\,(dB)} - Power_{muffler\,(dB)}$$

25

Sidlab Co

noiznamib

6₺

mponents

50

Simulated vs Measi

Measured vs Simulated TL

69

smroi •

i reads i

1.1.1

 $3. \hookrightarrow \text{initEigs.m}$

I. b7.m 2. initSpectral.m

ÞΔ

$$(x : w : x)_{(u)} \Phi(t : w)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{1=u}^{\infty} (\lambda : x : w : x)_{(u)} \Phi(t : w : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{1=u}^{\infty} (\lambda : x : w : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{1=u}^{\infty} (\lambda : x : w : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{1=u}^{\infty} (\lambda : x : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{1=u}^{\infty} (\lambda : x : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{1=u}^{\infty} (\lambda : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{0=w}^{\infty} (\lambda : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{0=w}^{\infty} (\lambda : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_{0=w}^{\infty} \sum_{0=w}^{\infty} (\lambda : x)_{(u)} \circ \sum_{0=w}^{\infty} \sum_$$

construction can only be recovered by writing for factor $\gg 0$.

$$(x;m;r)^{(n)}\Phi(t;m)^{(n)}\wp\sum_{0=m}\sum_{1=n}$$

 \Leftarrow

tion is given by

nstruction

ayout

in binary files, takes eg m-fft

corrMat, finds eigenvalues

60

2.4. Reco

The reconstruc

$$egin{aligned} q(\xi,t) - ar{q}(\xi) &pprox \sum_{j=1}^r a_j(t) arphi_j(\xi) \ q(r, heta,t;x) &= ar{q}(r, heta,t;x) + \ \end{array}$$

Since the snapshot pod implementation is not error-free, the re

$$q(r, heta,t;x)=ar{q}\left(r, heta,t;x
ight)+ ext{(factor)}$$

```
\cot^{(n)^*}(k;m;t)\,\mathrm{d}t
(i)
n;r,t)\,\mathrm{u}^*(k;m;r,t')\,\mathrm{r}\,\mathrm{d}r
(b)
(i)
(i)
(i)
```

OD Equations

1.2. La

75

 $\begin{tabular}{ll} $L:$ \hookrightarrow initPod.m & & carries out POD calculations (quadrature, multiplication $$A:$ \hookrightarrow timeReconstructFlow.m & & performs $2d$ reconstruction + plotSkmr (generates $1d$ raw $$$.$ \rightarrow timeReconstructFlow.m $$$$$.} \end{tabular}$

iyout 2

ggf betwen $\alpha\Phi$) according to Papers (Citriniti George 2000 for Classic POD,

dial graph)

62

2.3. Snapshot F

$$\begin{split} & \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{u}_{\mathbf{T}}(k;m;r,t) \\ &= \Phi_{\mathbf{T}}^{(n)}(k;m;r) \lambda^{(n)}(k;m) \\ &\mathbf{R}\left(k;m;t,t'\right) = \int_{r} \mathbf{u}(k;\tau) \\ & \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{u}_{\mathbf{T}}(k;m;r,t) \\ &= \Phi_{\mathbf{T}}^{(n)}(k;m;r) \lambda^{(n)}(k;m) \end{split}$$

Equations (Fixed)

$$\frac{\int_{a^{1/2}}^{a} \int_{a^{1/2}}^{a} \int_{a^{1/2}$$

 $\text{3.1noqmI} \cdot \mathcal{E}.\, I$

٥۷

pipe = Pipe(); creates a Pipe Class. As the functio

I. obj. Case
Id - stores properties like Re, rotation number S,
experiment

4. obj.plt - plot configuration

63

ant Switches

ns (above) are called, data is stored in sub-structs:

tal flags such as quadrature (simpson/trapezoidal), number of gridpoints,

64

2.2. Classic POD

$$\begin{split} &\int_{r'} \frac{r^{1/2} S_{i,j}\left(r,r';m;f\right) r'^{1}}{W_{i,j}(r,r';m;f)} \\ &= \underbrace{\lambda^{(n)}(m,f) r^{1/2} \phi_{i}^{(n)}(r;i)}_{\hat{\lambda}^{(n)}(m;f)} \underbrace{\phi_{i}^{(n)}(r,m;}_{\phi_{i}^{(n)}(r,m;t)} \\ &\alpha_{n}(m;t) = \int_{r} \mathbf{u}(m;r,t) r \end{split}$$

OD Equations

re used in the above code. $\label{eq:phi} {\bf r}^{\rm d}{\bf r}' = \lambda^{(n)}(k;m) \Phi^{(n)}(k;m;r)$

 $\mathrm{tb}\left(t,^{\prime}\tau;m;\lambda\right)^{*}\mathbf{u}(t,\tau;m;\tau;t)$

 $\operatorname{ap} \iota(\imath \, ; \! u \, ; \! u)_{\ast(u)^{\check{\mathfrak{q}}}}$

2. Equations Used

89

in Code Procedure

66

2.1. Classic Pt

The following equations a

$$\begin{split} &\int_{r'} \mathbf{S}\left(k;m;r,r'\right) \boldsymbol{\Phi}^{(n)}\left(k;m;r'\right) \\ &\mathbf{S}\left(k;m;r,r'\right) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{0}^{\tau} \mathbf{u}(k \\ &\alpha^{(n)}(k;m;t) = \int_{r} \mathbf{u}(k;m;r,t) \boldsymbol{\Phi} \end{split}$$

2.5. Recor

In order to reconstruct in code, caseId.fluctuation = 'off'. Tl

nstruction

his is incorrect. The necessary use of (factor γ) is incorrect

76

4.3. Klassik

 $\frac{1}{\tau} \int_0^\tau \left(\sum_i \Phi_{\mathrm{T}}^{(i)}(k;m;r) \alpha^{(i)} \right)$

To derive the questioned equ

Substitute \mathbf{u}_{T} wi

3. Der

ivation

uation, consider the integral:

$$t)\alpha^{(n)^*}(k;m;t)dt.$$

ith its expansion:

$$(\alpha^{(n)}(k;m;t)) \alpha^{(n)^*}(k;m;t) dt.$$

78

4.2. Snapshot-Cla

3.1. 4 Do

Exchange the order of summation and

$$\sum_{l} \Phi_{\mathrm{T}}^{(l)}(k;m;r) \left(\frac{1}{\tau} \int_{0}^{\tau} \omega^{(l)} \right)$$

Due to the orthogonality, namely $\mathfrak t$

$$\langle u_{(u)} v_{(u)} \rangle$$

all terms where $l \neq n$ will vanish, an

$$\Phi_{\mathrm{T}}^{(n)}(n;n)\left(1,\frac{1}{\tau}\right)\left(1,m;n\right)$$

This derivation assumes the normalization of modes and their orthogonality, of the spatial structure ($\Phi_T^{(n)}$) (

erivation

1 integration, and apply orthogonality,

$$^{(l)}(k;m;t)lpha^{(n)^*}(k;m;t)dtigg)$$
 .

hat $\alpha^{(n)}$ and $\alpha^{(p)}$ are uncorrelated

$$=\lambda^{(n)}\delta_{np}$$

d there remains only the l=n term,

$$(k;m;t)\alpha^{(n)^*}(k;m;t)dt\biggr)\,.$$

along with the eigenvalue relationship to simplify the original integral into a of each mode scaled by its significance $(\lambda^{(n)})$.

80

4.1. Radia

3.2.6 Do

The cross-correlation tensor ${f R}$ is defined as ${f R}$ $(k,m;t,t')=\int_r {f u}(k;m;r,n)$ The cross-correlation tensor ${f R}$ is defined as ${f POD}$ in

$$\min_{\boldsymbol{t}, \boldsymbol{\lambda}} \int_{\boldsymbol{\tau}} \frac{1}{\tau} \int_{\boldsymbol{\tau}} \frac{1}{\tau} \min_{\boldsymbol{\tau}, \boldsymbol{\tau}, \boldsymbol{\tau}} |\boldsymbol{\tau}, \boldsymbol{\tau}, \boldsymbol{\tau},$$

erivation

 $t){\bf u}^*\left(k;m;r,t'\right)r\,{\rm d}r.$ This tensor is now transformed from $[3r\times 3r']$ to a nodes are then constructed as,

$$n;t)\mathrm{d}t=\Phi_{\mathrm{T}}^{(n)}(k;m;r)\lambda^{(n)}(k;m).$$

82

4. Result Compariso

POD S=3.0

5. Energy r

Classic

96

6.1. Reco

iA .2.∂

١٥0

struction

nalysis

98

6. Recon