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Main Equations of Wang’s Anand-Type Viscoplastic Model

Flow Rule (Plastic Strain Rate)

Plastic strain rate increases with stress and
temperature.
No explicit yield surface; flow occurs at all
nonzero stresses.

Deformation Resistance Saturation 

Defines the steady-state value that  evolves
toward.
Depends on strain rate and temperature.

Evolution of Deformation Resistance 

Describes dynamic hardening and softening of
the material.
 evolves depending on proximity to  and flow

activity.

Note: Constants  are material-specific
and fitted to experimental creep/strain rate data.
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∣

s

s∗

∣
∣

as

s∗ε̇
p

ss∗

A,Q,m,j,,,n,a h0ŝ
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=s∗ ŝ( exp( ))
ε̇ p

A

Q

RT

n

s

s

= sign(1 − )ṡ h0 1 −∣
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Abstract
ThisbookisacompilationofprojectsofMichaelRabaandcanbefoundat:

https://michaelraba.github.io/talks/

Comparing Anand Model Predictions at Two Strain Rates

Observed Behavior

Top Graph (a): 
High strain rate → higher stress
Recovery negligible → pronounced hardening
Bottom Graph (b): 
Lower strain rate → lower stress at same strain
Recovery and creep effects more significant

Model Accuracy: Lines = model prediction, X =
experimental data

Key Insights from Wang (2001)

“At lower strain rates, recovery dominates… the
stress levels off early.”
“At high strain rates, hardening dominates, and
the stress grows continuously.”

Anand’s model smoothly captures strain-rate and
temperature dependence of solder materials.
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Anand Viscoplasticity Constants for 60Sn40Pb

Image Reference

Values are from correspond to 60Sn40Pb solder
parameters used in Anand's model:

: Initial deformation resistance
: Activation energy over gas constant

: Pre-exponential factor for flow rate
: Multiplier of stress inside sinh
: Strain rate sensitivity of stress
: Hardening/softening constant

: Coefficient for saturation stress
: Strain rate sensitivity of saturation
: Strain rate sensitivity of hardening or

softening

Numerical Values

 Pa
 K

 s

 Pa
 Pa

These constants match Wang's paper for modeling
60Sn40Pb viscoplasticity.
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Relaxed (Intermediate) Configuration

Context for the Relaxed Configuration

The relaxed configuration represents the material after
removing plastic deformations but before applying new
elastic deformations.
It is introduced to separate permanent plastic effects
from recoverable elastic effects.
All thermodynamic potentials, internal variables, and
evolution laws are defined relative to this frame.
The relaxed state provides a clean, natural reference
for measuring elastic strain  and computing
dissipation.

What Happens in the Relaxed Configuration?

The elastic deformation gradient  is measured from
the relaxed state to the current deformed state.
Elastic strain measures like  and  are defined in
this configuration.
The Kirchhoff stress  is naturally associated with the
relaxed volume.
Plastic flow is accounted for separately through the
plastic velocity gradient .

Summary:

The relaxed configuration isolates elastic responses cleanly, enabling proper definition of thermodynamics and
plastic evolution laws.
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Forward Euler Explicit time integration scheme Pseudocode

Initialization

Material constants: 
Strain rate: 
Temperature set: 
Set: 

Time Evolution Loop

1. 
2. 
3. Compute 
4. Approximate  (linearize if )
5. 

Plastic Flow & Resistance Evolution

6. 
7. 
8. Update: 
9. Update: 

10. Record 

Termination

Stop when 
Plot  vs  for all 
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Stress Evolution and Thermal Effects

Stress Evolution and Thermal Effects

In the stress evolution equation,

the term  represents the stress change that would occur
due to pure thermal expansion alone, without any mechanical

loading.

Why Subtract the Thermal Term?

Thermal expansion creates strain even without
external forces.
Without subtracting , the model would falsely
attribute thermal strain as mechanical stress.
Subtracting isolates the true mechanical response
from thermal effects.

Summary: 

Thermal expansion induces strain without force.
Subtracting  ensures only mechanical strains generate stresses.
This keeps the constitutive model physically accurate during heating and cooling.
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Forward Euler Scheme for Anand Model

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

# Material constants for 62Sn36Pb2Ag solder alloy

A = 2.24e8       # 1/s

Q_R = 11200      # K

j = 13           # dimensionless

m = 0.21         # dimensionless

h0 = 1.62e10     # Pa

s0 = 8.47e7      # Pa

s_hat = 8.47e7   # Pa

n = 0.0277       # dimensionless

a = 1.7          # dimensionless

E = 5.2e10       # Pa (Elastic modulus)

# Temperatures in Kelvin

T_C = [-55, -25, 25, 75, 125]

T_list = [T + 273.15 for T in T_C]

# Simulation parameters

strain_rate = 1e-5  # 1/s

eps_total_max = 0.6

t_max = eps_total_max / strain_rate

time_steps = 10000

t_eval = np.linspace(0, t_max, time_steps)

# Define the ODE system

def system(t, y, T):

    ep_p, s = y

    eps_total = strain_rate * t

    sigma_trial = E * (eps_total - ep_p)

    x = j * sigma_trial / s

    if np.abs(x) < 0.01:

        sinh_x = x

    else:

        sinh_x = np.sinh(np.clip(x, -30, 30))

    sinh_x = np.maximum(sinh_x, 1e-12)

    dep_p = A * np.exp(-Q_R / T) * sinh_x**(1/m)

    s_star = s_hat * (dep_p / A * np.exp(Q_R / T))**n

    ds = h0 * np.abs(1 - s/s_star)**a * np.sign(1 - s/s_star) * dep_p

    return [dep_p, ds]

# Plotting

lfi(fii(96))

6 . 2
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Evolution Equation for the Stress

Stress Evolution Equation (Rate form of Hooke's Law)

(rate-form Hooke’s law for finite deformation
plasticity, with frame-indifference enforced through

the Jaumann rate.)

Jaumann Rate Definition

Material Tensors and Operators

 — isotropic elasticity tensor
 represents how instantaneous strain rates

generate stresses according to the elastic material's
stiffness properties.

,  — temperature-dependent moduli
 — stress-temperature coupling

 — thermal expansion coefficient
 — stretching tensor

 — spin tensor
 = fourth-order identity tensor
 = second-order identity tensor

Summary: 

Stress rate follows Jaumann derivative to ensure frame indifference.
Elastic response governed by isotropic fourth-order tensor .
Thermal expansion introduces additional stress through .
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D
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Evolution Equation for the Stress
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Strain rate sensitivity of stress m

As , rate insensitive (yield)

As , small stress change causes big change in strain rate

m→0

m→1

7 . 1
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Flow rule

Tensorial Flow Rule (directional form)

Equivalent Stress Definition

Plastic Strain Rate (magnitude form)

Full Flow Rule with Hyperbolic Sine

Summary: 

Direction given by .
Magnitude determined by hyperbolic sine based on .

 represents the effective shear stress computed from deviatoric stress.
 is the von Mises Equivalent stress, but is formally defined without yield point

Full flow = direction × magnitude.
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Flow rule

Tensorial Flow Rule (directional form)

Equivalent Stress Definition

Plastic Strain Rate (magnitude form)

Full Flow Rule with Hyperbolic Sine

Summary: 

Direction given by .
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Relaxed Configuration Constituative Laws

Kinematics in the Relaxed Configuration

Elastic deformation gradient:

Elastic right Cauchy-Green tensor:

Elastic Green–Lagrange strain tensor:

Stress and Power Quantities

Kirchhoff stress (weighted Cauchy stress):

Stress power split:

Summary:
Elastic kinematics and stress measures are formulated relative to the relaxed configuration, cleanly separating
plastic and elastic contributions.
Stress Power Split allows Anand to cleanly isolate plastic dissipation from elastic storage.
Green-Lagrange strain tensor  is used because it symmetrically captures nonlinear elastic strain relative to the
relaxed configuration
The right Cauchy-Green tensor  is required as an intermediate to compute  from the elastic
deformation gradient  without referencing spatial coordinates
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Schematic Variants for Muffler Subcomponents

Part 1 — Chamber and BafflePart 2 — Fluid domain

Part 3 — Fiberglass Absorbant (gold)

Part 4 — Showing perforates (aimed at
fiberglass)

Part 5 — Final Assembly View

42
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Dissipation Separation: Elastic vs Plastic in Anand’s Model

Thermodynamic Separation

1. Start with Total Dissipation:

where 
2. Split Stress Power:

with:

3. Group Terms with :

4. Apply Elastic Energy Consistency:

Key Physical Insights

Elastic deformations are recoverable and do
not cause entropy production.
All dissipation stems from the plastic flow: .
Plastic work increases entropy and governs
viscoplastic evolution.

Summary:
The stress power split ensures that the second law

is satisfied by assigning dissipation solely to
irreversible processes.
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Reference Configuration

Framework in the Reference Configuration

The free energy  is defined relative to the reference
configuration.
State variables like  are used as
arguments of .
Stress is expressed using the second Piola–Kirchhoff
tensor .
Dissipation inequality, stress–strain relations, and
evolution laws are all written in reference variables.
Mass density  from the reference configuration
normalizes all terms.

Key Equations in the Reference Frame

Free energy:

Dissipation inequality:

Constitutive relation:

Summary:

In the reference configuration, all energy storage, stress updates, and internal variable evolution are formulated
with reference-frame quantities for consistency and objectivity.

ψ

,θ,,,s E
e

ḡB̄

ψ

S

ρ0

ψ=ψ(,θ,,,s) E
e

ḡB̄

+η−S:+(θ⋅≤0 ψ̇θ̇ρ
−1
0Ėρ0)

−1
q0g0

S=ρ0

∂ψ

∂Ee
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Framework in the Reference Configuration

The free energy  is defined relative to the reference
configuration.
State variables like  are used as
arguments of .
Stress is expressed using the second Piola–Kirchhoff
tensor .
Dissipation inequality, stress–strain relations, and
evolution laws are all written in reference variables.
Mass density  from the reference configuration
normalizes all terms.

Key Equations in the Reference Frame

Free energy:

Dissipation inequality:

Constitutive relation:

Summary:

In the reference configuration, all energy storage, stress updates, and internal variable evolution are formulated
with reference-frame quantities for consistency and objectivity.

ψ

, θ, , , sEe ḡ B̄

ψ

S

ρ0

ψ = ψ( , θ, , , s)Ee ḡ B̄

+ η − S : + ( θ ⋅ ≤ 0ψ̇ θ̇ ρ−1
0

Ė ρ0 )−1q0 g0

S = ρ0

∂ψ

∂Ee
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Thermodynamics

Thermodynamic Quantities

Free energy density:

Reduced dissipation inequality:

State variables:

with  as elastic strain and  as internal resistance.

Stress Power and Kirchhoff Stress

Stress power per relaxed volume:

Weighted Cauchy (Kirchhoff) stress:

Decomposition of stress power:

Summary: 

Free energy and dissipation govern thermodynamic consistency.
Stress power naturally splits into elastic and plastic parts.
Kirchhoff stress simplifies stress evolution accounting for volume changes.

ψ=ϵ−θη

+η−T:L+(ρθq⋅g≤0 ψ̇θ̇ρ
−1

)
−1

{,θ,,,s} E
e

ḡB̄

E
e

s

=()T:L ω̇
ρ0

ρ

or =(detF)T T̃=()T T̃
ρ0

ρ

=+ ω̇ω̇
e

ω̇
p

=:,=(): ω̇
e

T̃Ė
e

ω̇
p

C
e
T̃L

p
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Thermodynamics

Thermodynamic Quantities

Free energy density:

Reduced dissipation inequality:

State variables:

with  as elastic strain and  as internal resistance.

Stress Power and Kirchhoff Stress

Stress power per relaxed volume:

Weighted Cauchy (Kirchhoff) stress:

Decomposition of stress power:

Summary: 

Free energy and dissipation govern thermodynamic consistency.
Stress power naturally splits into elastic and plastic parts.
Kirchhoff stress simplifies stress evolution accounting for volume changes.

ψ = ϵ − θη

+ η − T : L + (ρθ q ⋅ g ≤ 0ψ̇ θ̇ ρ−1 )−1

{ , θ, , , s}E
e

ḡ B̄

Ee s

= ( )T : Lω̇
ρ0

ρ

or= (det F)TT̃ = ( )TT̃
ρ0

ρ

= +ω̇ ω̇e ω̇p

= : , = ( ) :ω̇e
T̃ Ė

e
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Ansys Simulation

Simulated Transmission Loss (0–1000 Hz) by approximating muffler walls as fluid at 20 deg C

Figure: Transmission Loss curve of the muffler between 5 Hz and 1000 Hz at 20°C. 43

1. Code Execution and Layout
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Ansys Simulation

Simulated Transmission Loss (0–1000 Hz) by approximating muffler walls as fluid at 20 deg C

Figure: Transmission Loss curve of the muffler between 5 Hz and 1000 Hz at 20°C. 44

1. Code Execution and Layout
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Simlab Simulation

Simulated Transmission Loss (0–1000 Hz) Simlab model

45

POD Analysis of Turbulent Pipe Flow

M. Raba

Created: 2025-09-10 Wed 03:38
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Simlab Simulation

Simulated Transmission Loss (0–1000 Hz) Simlab model
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POD Analysis of Turbulent Pipe Flow

M. Raba

Created: 2025-09-10 Wed 03:38
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Sidlab and Ansys File Download Center

SIDLAB Model

File: Mark3Sid.zip
Created with: SIDLAB 5.1

ANSYS Simulation

File: Mark-I-MDF-clearned-data.wbpz
Created with: ANSYS 2023 R2

⬇ Download SIDLAB File⬇ Download ANSYS File
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Sidlab Components
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Sidlab Components

Inlet Port

Outlet Port
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Simulated vs Measured Insertion Loss

Measured vs Simulated TLInsertion Loss Explanation

Insertion Loss (IL) quantifies how
much sound is attenuated when a

muffler is added to the system.

General formula:

Because our data is already in
decibels (dB), this simplifies to:

IL=10() log10

Pbaseline

Pmuffler

IL=− Powerbaseline (dB)Powermuffler (dB)
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Measured vs Simulated TL Insertion Loss Explanation

Insertion Loss (IL) quantifies how
much sound is attenuated when a

muffler is added to the system.

General formula:

Because our data is already in
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1.1. Layout

1. b7.m

2. initSpectral.m

reads in binary files, takes eg m-fft

3.  initEigs.m

forms corrMat, finds eigenvalues

↪

59

2.4. Reconstruction

The reconstruction is given by

Since the snapshot pod implementation is not error-free, the reconstruction can only be recovered by writing for .

q(ξ,t)−(ξ) q̄

q(r,θ,t;x)

≈(t)(ξ)⇒ ∑
j=1

r

ajφj

=(r,θ,t;x)+(m;t)(r;m;x) q̄∑
n=1

∑
m=0

α
(n)

Φ
(n)

factor≫0

q(r,θ,t;x)=(r,θ,t;x)+(factor γ)(m;t)(r;m;x) q̄∑
n=1

∑
m=0

α
(n)

Φ
(n)
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1.1. Layout

1. b7.m

2. initSpectral.m

reads in binary files, takes eg m-fft

3.  initEigs.m

forms corrMat, finds eigenvalues

↪
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2.4. Reconstruction

The reconstruction is given by

Since the snapshot pod implementation is not error-free, the reconstruction can only be recovered by writing for .

q(ξ, t) − (ξ)q̄

q(r, θ, t; x)

≈ (t) (ξ) ⇒∑
j=1

r

aj φj

= (r, θ, t; x) + (m; t) (r; m; x)q̄ ∑
n=1

∑
m=0

α(n) Φ(n)

factor ≫ 0

q(r, θ, t; x) = (r, θ, t; x) + (factor γ) (m; t) (r; m; x)q̄ ∑
n=1

∑
m=0

α(n) Φ(n)
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1.2. Layout 2

1.  initPod.m

carries out POD calculations (quadrature, multiplication ggf betwen ) according to Papers (Citriniti George 2000 for Classic POD,

Hellstrom Smits 2017 for Snapshot POD)

2.  timeReconstructFlow.m

performs 2d reconstruction + plotSkmr (generates 1d radial graph)

↪

αΦ

↪

61

2.3. Snapshot POD Equations

(k;m;r,t)(k;m;t)dt lim
τ→∞

1

τ
∫

τ

0
uTα

(n)
∗

=(k;m;r)(k;m) Φ
(n)
T

λ
(n)

R(k;m;t,)=u(k;m;r,t)(k;m;r,)r dr t
′

∫
r

u
∗

t
′

(k;m;r,t)(k;m;t)dt lim
τ→∞

1

τ
∫

τ

0

uTα
(n)∗

=(k;m;r)(k;m). Φ
(n)
T

λ
(n)
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1.2. Layout 2

1.  initPod.m

carries out POD calculations (quadrature, multiplication ggf betwen ) according to Papers (Citriniti George 2000 for Classic POD,

Hellstrom Smits 2017 for Snapshot POD)

2.  timeReconstructFlow.m

performs 2d reconstruction + plotSkmr (generates 1d radial graph)

↪

αΦ

↪
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2.3. Snapshot POD Equations

(k; m; r, t) (k; m; t)dtlim
τ→∞

1

τ
∫

τ

0
uT α

(n)∗

= (k; m; r) (k; m)Φ
(n)
T

λ
(n)

R (k; m; t, ) = u(k; m; r, t) (k; m; r, ) r drt
′ ∫

r

u
∗

t
′

(k; m; r, t) (k; m; t) dtlim
τ→∞

1

τ
∫

τ

0

uT α
(n)∗

= (k; m; r) (k; m).Φ
(n)
T

λ
(n)
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1.3. Important Switches

pipe = Pipe(); creates a Pipe Class. As the functions (above) are called, data is stored in sub-structs:

1. obj.CaseId - stores properties like Re, rotation number , experimental flags such as quadrature (simpson/trapezoidal), number of gridpoints,

frequently called vectors (rMat )

2. obj.pod - eigen data, used for calculating POD

3. obj.solution - computed POD modes

4. obj.plt - plot configuration

S

r=1,…,0.5

63

2.2. Classic POD Equations (Fixed)

d ∫
r′

(r,;m;f) r
1/2

Si,jr
′

r
′1/2

  

(r,;m;f) Wi,jr
′

(;m;f) ϕ
∗(n)
jr

′
r

′1/2

  

(;m;f) ϕ̂
ψ(i)

jr
′

r
′

=(m,f) λ
(n)

  

(m;f) λ̂
(n)

(r;m;f) r
1/2

ϕ
(n)
i

  

(r,m;f) ϕ̂
(n)

i

(m;t)=u(m;r,t)(m;r)dr αn∫
r

r
1/2

Φ∗
n
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1.3. Important Switches

pipe = Pipe(); creates a Pipe Class. As the functions (above) are called, data is stored in sub-structs:

1. obj.CaseId - stores properties like Re, rotation number , experimental flags such as quadrature (simpson/trapezoidal), number of gridpoints,

frequently called vectors (rMat )

2. obj.pod - eigen data, used for calculating POD

3. obj.solution - computed POD modes

4. obj.plt - plot configuration

S

r = 1, … , 0.5
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2.2. Classic POD Equations (Fixed)

d∫
r′

(r, ;m; f)r
1/2Si,j r

′
r

′1/2

  

(r, ;m;f)Wi,j r′

( ;m; f)ϕ
∗(n)
j r

′
r

′1/2

  

( ;m;f)ϕ̂
ψ(i)

j r′

r′

= (m, f)λ(n)

  

(m;f)λ̂
(n)

(r;m; f)r1/2ϕ
(n)
i

  

(r,m;f)ϕ̂
(n)

i

(m; t) = u(m; r, t) (m; r)drαn ∫
r

r
1/2Φ∗

n
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2. Equations Used in Code Procedure

65

2.1. Classic POD Equations

The following equations are used in the above code.

S(k;m;r,)(k;m;)d=(k;m)(k;m;r) ∫
r

′

r
′

Φ
(n)

r
′

r
′

r
′

λ
(n)

Φ
(n)

S(k;m;r,)=u(k;m;r,t)(k;m;,t)dt r
′

lim
τ→∞

1

τ
∫

τ

0

u
∗

r
′

(k;m;t)=u(k;m;r,t)(k;m;r)r dr α
(n)

∫
r

Φ
(n)

∗
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2. Equations Used in Code Procedure
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2.1. Classic POD Equations

The following equations are used in the above code.

S (k; m; r, ) (k; m; ) d = (k; m) (k; m; r)∫
r

′

r
′ Φ(n)

r
′

r
′

r
′

λ
(n) Φ(n)

S (k; m; r, ) = u(k; m; r, t) (k; m; , t) dtr
′ lim

τ→∞

1

τ
∫

τ

0

u
∗

r
′

(k; m; t) = u(k; m; r, t) (k; m; r)r drα
(n) ∫

r

Φ(n)∗
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2.5. Reconstruction

In order to reconstruct in code, caseId.fluctuation = ’off’. This is incorrect. The necessary use of (factor ) is incorrect γ
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4.3. Klassik POD S=0.0
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2.5. Reconstruction

In order to reconstruct in code, caseId.fluctuation = ’off’. This is incorrect. The necessary use of (factor ) is incorrectγ
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4.3. Klassik POD S=0.0
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3. Derivation

To derive the questioned equation, consider the integral:

Substitute  with its expansion:

(k;m;r,t)(k;m;t)dt.
1

τ
∫

τ

0

uTα
(n)

∗

uT

((k;m;r)(k;m;t))(k;m;t)dt.
1

τ
∫

τ

0

∑
l

Φ
(l)
T

α
(l)

α
(n)

∗
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4.2. Snapshot-Classic Comparison
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3. Derivation

To derive the questioned equation, consider the integral:

Substitute  with its expansion:

(k;m; r, t) (k;m; t)dt.
1

τ
∫

τ

0

uT α
(n)∗

uT

( (k;m; r) (k;m; t)) (k;m; t)dt.
1

τ
∫

τ

0

∑
l

Φ
(l)
T

α
(l)

α
(n)∗
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4.2. Snapshot-Classic Comparison
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3.1. 4 Derivation

Exchange the order of summation and integration, and apply orthogonality,

Due to the orthogonality, namely that  and  are uncorrelated

all terms where  will vanish, and there remains only the  term,

This derivation assumes the normalization of modes and their orthogonality, along with the eigenvalue relationship to simplify the original integral into a

form that reveals the spatial structure (  ) of each mode scaled by its significance .

(k;m;r)((k;m;t)(k;m;t)dt). ∑
l

Φ
(l)
T

1

τ
∫

τ

0
α

(l)
α

(n)
∗

α
(n)

α
(p)

⟨⟩= a
(n)
α

(p)
λ

(n)
δnp

l≠nl=n

(k;m;r)((k;m;t)(k;m;t)dt). Φ
(n)
T

1

τ
∫

τ

0
α

(n)
α

(n)
∗

Φ
(n)
T() λ

(n)
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4.1. Radial Classic
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Due to the orthogonality, namely that  and  are uncorrelated

all terms where  will vanish, and there remains only the  term,

This derivation assumes the normalization of modes and their orthogonality, along with the eigenvalue relationship to simplify the original integral into a

form that reveals the spatial structure (  ) of each mode scaled by its significance .

(k;m; r)( (k;m; t) (k;m; t)dt) .∑
l

Φ
(l)
T

1

τ
∫

τ

0
α

(l)
α

(n)∗

α(n) α(p)

⟨ ⟩ =a
(n)
α

(p)
λ

(n)δnp

l ≠ n l = n

(k;m; r)( (k;m; t) (k;m; t)dt) .Φ
(n)
T

1

τ
∫

τ

0
α

(n)
α

(n)∗

Φ
(n)
T
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80

4.1. Radial Classic
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3.2. 6 Derivation

The cross-correlation tensor  is defined as . This tensor is now transformed from  to a

 tensor. The  POD modes are then constructed as,

RR(k;m;t,)=u(k;m;r,t)(k;m;r,)r dr t
′

∫ru∗
t

′
[3r×3] r

′

[t×] t
′

n

(k;m;r,t)(k;m;t)dt=(k;m;r)(k;m). lim
τ→∞

1

τ
∫

τ

0

uTα
(n)

∗

Φ
(n)
T

λ
(n)
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4. Result Comparison Classic/Snapshot
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3.2. 6 Derivation

The cross-correlation tensor  is defined as . This tensor is now transformed from  to a

 tensor. The  POD modes are then constructed as,

R R (k; m; t, ) = u(k; m; r, t) (k; m; r, ) r drt
′ ∫

r
u∗

t
′ [3r × 3 ]r

′

[t × ]t
′

n

(k; m; r, t) (k; m; t)dt = (k; m; r) (k; m).lim
τ→∞

1

τ
∫

τ

0

uT α
(n)∗

Φ
(n)
T

λ
(n)
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4. Result Comparison Classic/Snapshot
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4.4. Klassik POD S=3.0
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4.4. Klassik POD S=3.0
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5. Energy n=0 Classic
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5. Energy n=0 Classic
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5.1. n=3 Classic
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6.1. Reconstruction
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5.1. n=3 Classic
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6.1. Reconstruction
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5.2. Analysis
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