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Source Paper

Constitutive Equations for Hot-Working of
Metals

Author: Lallit Anand (1985)

DOI: 

One of the foundational papers in thermodynamically consistent
viscoplasticity modeling—especially significant in the context of

metals subjected to large strains and high temperatures.
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Case Study: Wang (2001) Apply to Solder

Source: Wang, C. H. (2001). “A Unified
Creep–Plasticity Model for Solder Alloys.”

DOI: 

Why Wang's Paper Matters

Applies Anand’s unified viscoplastic framework to model solder behavior.
Anand's model can be reduced and fitted from experiments.
transition the theory into engineering-scale implementation.
Targets solder joints in microelectronic packages (chip on PCB, soldered
connections).

10.1115/1.1371781
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Comparing Anand Model Predictions at Two Strain Rates

Observed Behavior

Top Graph (a): 
High strain rate → higher stress
Recovery negligible → pronounced hardening
Bottom Graph (b): 
Lower strain rate → lower stress at same strain
Recovery and creep effects more significant

Model Accuracy: Lines = model prediction, X =
experimental data

Key Insights from Wang (2001)

“At lower strain rates, recovery dominates… the
stress levels off early.”
“At high strain rates, hardening dominates, and
the stress grows continuously.”

Anand’s model smoothly captures strain-rate and
temperature dependence of solder materials.
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Main Equations of Wang’s Anand-Type Viscoplastic Model

Flow Rule (Plastic Strain Rate)

Plastic strain rate increases with stress and
temperature.
No explicit yield surface; flow occurs at all
nonzero stresses.

Deformation Resistance Saturation 

Defines the steady-state value that  evolves
toward.
Depends on strain rate and temperature.

Evolution of Deformation Resistance 

Describes dynamic hardening and softening of
the material.
 evolves depending on proximity to  and flow

activity.

Note: Constants  are material-specific
and fitted to experimental creep/strain rate data.
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Anand Viscoplasticity Constants for 60Sn40Pb

Image Reference

Values are from correspond to 60Sn40Pb solder
parameters used in Anand's model:

: Initial deformation resistance
: Activation energy over gas constant

: Pre-exponential factor for flow rate
: Multiplier of stress inside sinh
: Strain rate sensitivity of stress
: Hardening/softening constant

: Coefficient for saturation stress
: Strain rate sensitivity of saturation
: Strain rate sensitivity of hardening or

softening

Numerical Values

 Pa
 K

 s

 Pa
 Pa

These constants match Wang's paper for modeling
60Sn40Pb viscoplasticity.
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n = 0.0231
a = 1.34

5 .  2



Forward Euler Explicit time integration scheme Pseudocode

Initialization

Material constants: 
Strain rate: 
Temperature set: 
Set: 

Time Evolution Loop

1. 
2. 
3. Compute 
4. Approximate  (linearize if )
5. 

Plastic Flow & Resistance Evolution

6. 
7. 
8. Update: 
9. Update: 

10. Record 

Termination

Stop when 
Plot  vs  for all 
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Forward Euler Scheme for Anand Model

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

# Material constants for 62Sn36Pb2Ag solder alloy

A = 2.24e8       # 1/s

Q_R = 11200      # K

j = 13           # dimensionless

m = 0.21         # dimensionless

h0 = 1.62e10     # Pa

s0 = 8.47e7      # Pa

s_hat = 8.47e7   # Pa

n = 0.0277       # dimensionless

a = 1.7          # dimensionless

E = 5.2e10       # Pa (Elastic modulus)

# Temperatures in Kelvin

T_C = [-55, -25, 25, 75, 125]

T_list = [T + 273.15 for T in T_C]

# Simulation parameters

strain_rate = 1e-5  # 1/s

eps_total_max = 0.6

t_max = eps_total_max / strain_rate

time_steps = 10000

t_eval = np.linspace(0, t_max, time_steps)

# Define the ODE system

def system(t, y, T):

    ep_p, s = y

    eps_total = strain_rate * t

    sigma_trial = E * (eps_total - ep_p)

    x = j * sigma_trial / s

    if np.abs(x) < 0.01:

        sinh_x = x

    else:

        sinh_x = np.sinh(np.clip(x, -30, 30))

    sinh_x = np.maximum(sinh_x, 1e-12)

    dep_p = A * np.exp(-Q_R / T) * sinh_x**(1/m)

    s_star = s_hat * (dep_p / A * np.exp(Q_R / T))**n

    ds = h0 * np.abs(1 - s/s_star)**a * np.sign(1 - s/s_star) * dep_p

    return [dep_p, ds]

# Plotting

l fi (fi i (9 6))

6 .  2



Strain rate sensitivity of stress m

As , rate insensitive (yield)

As , small stress change causes big change in strain rate

m → 0

m → 1
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Flow rule

Tensorial Flow Rule (directional form)

Equivalent Stress Definition

Plastic Strain Rate (magnitude form)

Full Flow Rule with Hyperbolic Sine

Summary: 

Direction given by .
Magnitude determined by hyperbolic sine based on .

 represents the effective shear stress computed from deviatoric stress.
 is the von Mises Equivalent stress, but is formally defined without yield point

Full flow = direction × magnitude.
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Evolution Equation for the Stress

Stress Evolution Equation (Rate form of Hooke's Law)

(rate-form Hooke’s law for finite deformation
plasticity, with frame-indifference enforced through

the Jaumann rate.)

Jaumann Rate Definition

Material Tensors and Operators

 — isotropic elasticity tensor
 represents how instantaneous strain rates

generate stresses according to the elastic material's
stiffness properties.

,  — temperature-dependent moduli
 — stress-temperature coupling

 — thermal expansion coefficient
 — stretching tensor

 — spin tensor
 = fourth-order identity tensor
 = second-order identity tensor

Summary: 

Stress rate follows Jaumann derivative to ensure frame indifference.
Elastic response governed by isotropic fourth-order tensor .
Thermal expansion introduces additional stress through .
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Stress Evolution and Thermal Effects

Stress Evolution and Thermal Effects

In the stress evolution equation,

the term  represents the stress change that would occur
due to pure thermal expansion alone, without any mechanical

loading.

Why Subtract the Thermal Term?

Thermal expansion creates strain even without
external forces.
Without subtracting , the model would falsely
attribute thermal strain as mechanical stress.
Subtracting isolates the true mechanical response
from thermal effects.

Summary: 

Thermal expansion induces strain without force.
Subtracting  ensures only mechanical strains generate stresses.
This keeps the constitutive model physically accurate during heating and cooling.
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Relaxed (Intermediate) Configuration

Context for the Relaxed Configuration

The relaxed configuration represents the material after
removing plastic deformations but before applying new
elastic deformations.
It is introduced to separate permanent plastic effects
from recoverable elastic effects.
All thermodynamic potentials, internal variables, and
evolution laws are defined relative to this frame.
The relaxed state provides a clean, natural reference
for measuring elastic strain  and computing
dissipation.

What Happens in the Relaxed Configuration?

The elastic deformation gradient  is measured from
the relaxed state to the current deformed state.
Elastic strain measures like  and  are defined in
this configuration.
The Kirchhoff stress  is naturally associated with the
relaxed volume.
Plastic flow is accounted for separately through the
plastic velocity gradient .

Summary:

The relaxed configuration isolates elastic responses cleanly, enabling proper definition of thermodynamics and
plastic evolution laws.
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Relaxed Configuration Constituative Laws

Kinematics in the Relaxed Configuration

Elastic deformation gradient:

Elastic right Cauchy-Green tensor:

Elastic Green–Lagrange strain tensor:

Stress and Power Quantities

Kirchhoff stress (weighted Cauchy stress):

Stress power split:

Summary:
Elastic kinematics and stress measures are formulated relative to the relaxed configuration, cleanly separating
plastic and elastic contributions.
Stress Power Split allows Anand to cleanly isolate plastic dissipation from elastic storage.
Green-Lagrange strain tensor  is used because it symmetrically captures nonlinear elastic strain relative to the
relaxed configuration
The right Cauchy-Green tensor  is required as an intermediate to compute  from the elastic
deformation gradient  without referencing spatial coordinates
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Dissipation Separation: Elastic vs Plastic in Anand’s Model

Thermodynamic Separation

1. Start with Total Dissipation:

where 
2. Split Stress Power:

with:

3. Group Terms with :

4. Apply Elastic Energy Consistency:

Key Physical Insights

Elastic deformations are recoverable and do
not cause entropy production.
All dissipation stems from the plastic flow: .
Plastic work increases entropy and governs
viscoplastic evolution.

Summary:
The stress power split ensures that the second law

is satisfied by assigning dissipation solely to
irreversible processes.
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Reference Configuration

Framework in the Reference Configuration

The free energy  is defined relative to the reference
configuration.
State variables like  are used as
arguments of .
Stress is expressed using the second Piola–Kirchhoff
tensor .
Dissipation inequality, stress–strain relations, and
evolution laws are all written in reference variables.
Mass density  from the reference configuration
normalizes all terms.

Key Equations in the Reference Frame

Free energy:

Dissipation inequality:

Constitutive relation:

Summary:

In the reference configuration, all energy storage, stress updates, and internal variable evolution are formulated
with reference-frame quantities for consistency and objectivity.
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Ė ρ0 )−1q0 g0

S = ρ0

∂ψ

∂Ee

11 .  1



Thermodynamics

Thermodynamic Quantities

Free energy density:

Reduced dissipation inequality:

State variables:

with  as elastic strain and  as internal resistance.

Stress Power and Kirchhoff Stress

Stress power per relaxed volume:

Weighted Cauchy (Kirchhoff) stress:

Decomposition of stress power:

Summary: 

Free energy and dissipation govern thermodynamic consistency.
Stress power naturally splits into elastic and plastic parts.
Kirchhoff stress simplifies stress evolution accounting for volume changes.
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Comparing Anand Model Predictions at Two Strain Rates

Observed Behavior

Top Graph (a): 
High strain rate → higher stress
Recovery negligible → pronounced hardening
Bottom Graph (b): 
Lower strain rate → lower stress at same strain
Recovery and creep effects more significant

Model Accuracy: Lines = model prediction, X =
experimental data

Key Insights from Wang (2001)

“At lower strain rates, recovery dominates… the
stress levels off early.”
“At high strain rates, hardening dominates, and
the stress grows continuously.”

Anand’s model smoothly captures strain-rate and
temperature dependence of solder materials.
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Main Equations of Wang’s Anand-Type Viscoplastic Model

Flow Rule (Plastic Strain Rate)

Plastic strain rate increases with stress and
temperature.
No explicit yield surface; flow occurs at all
nonzero stresses.

Deformation Resistance Saturation 

Defines the steady-state value that  evolves
toward.
Depends on strain rate and temperature.

Evolution of Deformation Resistance 

Describes dynamic hardening and softening of
the material.
 evolves depending on proximity to  and flow

activity.

Note: Constants  are material-specific
and fitted to experimental creep/strain rate data.
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Anand Viscoplasticity Constants for 60Sn40Pb

Image Reference

Values are from correspond to 60Sn40Pb solder
parameters used in Anand's model:

: Initial deformation resistance
: Activation energy over gas constant

: Pre-exponential factor for flow rate
: Multiplier of stress inside sinh
: Strain rate sensitivity of stress
: Hardening/softening constant

: Coefficient for saturation stress
: Strain rate sensitivity of saturation
: Strain rate sensitivity of hardening or

softening

Numerical Values

 Pa
 K
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 Pa

These constants match Wang's paper for modeling
60Sn40Pb viscoplasticity.
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Forward Euler Explicit time integration scheme Pseudocode

Initialization

Material constants: 
Strain rate: 
Temperature set: 
Set: 

Time Evolution Loop

1. 
2. 
3. Compute 
4. Approximate  (linearize if )
5. 

Plastic Flow & Resistance Evolution

6. 
7. 
8. Update: 
9. Update: 

10. Record 

Termination

Stop when 
Plot  vs  for all 

A, Q/R, j, m, , , n, a, Eh0 ŝ
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Forward Euler Scheme for Anand Model

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

# Material constants for 62Sn36Pb2Ag solder alloy

A = 2.24e8       # 1/s

Q_R = 11200      # K

j = 13           # dimensionless

m = 0.21         # dimensionless

h0 = 1.62e10     # Pa

s0 = 8.47e7      # Pa

s_hat = 8.47e7   # Pa

n = 0.0277       # dimensionless

a = 1.7          # dimensionless

E = 5.2e10       # Pa (Elastic modulus)

# Temperatures in Kelvin

T_C = [-55, -25, 25, 75, 125]

T_list = [T + 273.15 for T in T_C]

# Simulation parameters

strain_rate = 1e-5  # 1/s

eps_total_max = 0.6

t_max = eps_total_max / strain_rate

time_steps = 10000

t_eval = np.linspace(0, t_max, time_steps)

# Define the ODE system

def system(t, y, T):

    ep_p, s = y

    eps_total = strain_rate * t

    sigma_trial = E * (eps_total - ep_p)

    x = j * sigma_trial / s

    if np.abs(x) < 0.01:

        sinh_x = x

    else:

        sinh_x = np.sinh(np.clip(x, -30, 30))

    sinh_x = np.maximum(sinh_x, 1e-12)

    dep_p = A * np.exp(-Q_R / T) * sinh_x**(1/m)

    s_star = s_hat * (dep_p / A * np.exp(Q_R / T))**n

    ds = h0 * np.abs(1 - s/s_star)**a * np.sign(1 - s/s_star) * dep_p

    return [dep_p, ds]

# Plotting

l fi (fi i (9 6))
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Strain rate sensitivity of stress m

As , rate insensitive (yield)

As , small stress change causes big change in strain rate

m → 0

m → 1
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Flow rule

Tensorial Flow Rule (directional form)

Equivalent Stress Definition

Plastic Strain Rate (magnitude form)

Full Flow Rule with Hyperbolic Sine

Summary: 

Direction given by .
Magnitude determined by hyperbolic sine based on .

 represents the effective shear stress computed from deviatoric stress.
 is the von Mises Equivalent stress, but is formally defined without yield point

Full flow = direction × magnitude.
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Evolution Equation for the Stress

Stress Evolution Equation (Rate form of Hooke's Law)

(rate-form Hooke’s law for finite deformation
plasticity, with frame-indifference enforced through

the Jaumann rate.)

Jaumann Rate Definition

Material Tensors and Operators

 — isotropic elasticity tensor
 represents how instantaneous strain rates

generate stresses according to the elastic material's
stiffness properties.

,  — temperature-dependent moduli
 — stress-temperature coupling

 — thermal expansion coefficient
 — stretching tensor

 — spin tensor
 = fourth-order identity tensor
 = second-order identity tensor

Summary: 

Stress rate follows Jaumann derivative to ensure frame indifference.
Elastic response governed by isotropic fourth-order tensor .
Thermal expansion introduces additional stress through .
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Stress Evolution and Thermal Effects

Stress Evolution and Thermal Effects

In the stress evolution equation,

the term  represents the stress change that would occur
due to pure thermal expansion alone, without any mechanical

loading.

Why Subtract the Thermal Term?

Thermal expansion creates strain even without
external forces.
Without subtracting , the model would falsely
attribute thermal strain as mechanical stress.
Subtracting isolates the true mechanical response
from thermal effects.

Summary: 

Thermal expansion induces strain without force.
Subtracting  ensures only mechanical strains generate stresses.
This keeps the constitutive model physically accurate during heating and cooling.
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∇
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Relaxed (Intermediate) Configuration

Context for the Relaxed Configuration

The relaxed configuration represents the material after
removing plastic deformations but before applying new
elastic deformations.
It is introduced to separate permanent plastic effects
from recoverable elastic effects.
All thermodynamic potentials, internal variables, and
evolution laws are defined relative to this frame.
The relaxed state provides a clean, natural reference
for measuring elastic strain  and computing
dissipation.

What Happens in the Relaxed Configuration?

The elastic deformation gradient  is measured from
the relaxed state to the current deformed state.
Elastic strain measures like  and  are defined in
this configuration.
The Kirchhoff stress  is naturally associated with the
relaxed volume.
Plastic flow is accounted for separately through the
plastic velocity gradient .

Summary:

The relaxed configuration isolates elastic responses cleanly, enabling proper definition of thermodynamics and
plastic evolution laws.
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Relaxed Configuration Constituative Laws

Kinematics in the Relaxed Configuration

Elastic deformation gradient:

Elastic right Cauchy-Green tensor:

Elastic Green–Lagrange strain tensor:

Stress and Power Quantities

Kirchhoff stress (weighted Cauchy stress):

Stress power split:

Summary:
Elastic kinematics and stress measures are formulated relative to the relaxed configuration, cleanly separating
plastic and elastic contributions.
Stress Power Split allows Anand to cleanly isolate plastic dissipation from elastic storage.
Green-Lagrange strain tensor  is used because it symmetrically captures nonlinear elastic strain relative to the
relaxed configuration
The right Cauchy-Green tensor  is required as an intermediate to compute  from the elastic
deformation gradient  without referencing spatial coordinates
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e

ω̇
p

C
e
T̃ L

p

Ee

=Ce F eT

F e Ee

F e

10 .  2



Dissipation Separation: Elastic vs Plastic in Anand’s Model

Thermodynamic Separation

1. Start with Total Dissipation:

where 
2. Split Stress Power:

with:

3. Group Terms with :

4. Apply Elastic Energy Consistency:

Key Physical Insights

Elastic deformations are recoverable and do
not cause entropy production.
All dissipation stems from the plastic flow: .
Plastic work increases entropy and governs
viscoplastic evolution.

Summary:
The stress power split ensures that the second law

is satisfied by assigning dissipation solely to
irreversible processes.
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= ( ) :ω̇p
C

e
T̂ L

p

ψ̇

( − ) + ≥ 0ω̇
e

ψ̇ ω̇
p

− = 0 ⇒ ≥ 0ω̇
e

ψ̇ ω̇
p

ω̇p
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Reference Configuration

Framework in the Reference Configuration

The free energy  is defined relative to the reference
configuration.
State variables like  are used as
arguments of .
Stress is expressed using the second Piola–Kirchhoff
tensor .
Dissipation inequality, stress–strain relations, and
evolution laws are all written in reference variables.
Mass density  from the reference configuration
normalizes all terms.

Key Equations in the Reference Frame

Free energy:

Dissipation inequality:

Constitutive relation:

Summary:

In the reference configuration, all energy storage, stress updates, and internal variable evolution are formulated
with reference-frame quantities for consistency and objectivity.

ψ

, θ, , , sEe ḡ B̄

ψ

S

ρ0

ψ = ψ( , θ, , , s)Ee ḡ B̄

+ η − S : + ( θ ⋅ ≤ 0ψ̇ θ̇ ρ−1
0

Ė ρ0 )−1q0 g0

S = ρ0

∂ψ

∂Ee
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Thermodynamics

Thermodynamic Quantities

Free energy density:

Reduced dissipation inequality:

State variables:

with  as elastic strain and  as internal resistance.

Stress Power and Kirchhoff Stress

Stress power per relaxed volume:

Weighted Cauchy (Kirchhoff) stress:

Decomposition of stress power:

Summary: 

Free energy and dissipation govern thermodynamic consistency.
Stress power naturally splits into elastic and plastic parts.
Kirchhoff stress simplifies stress evolution accounting for volume changes.

ψ = ϵ − θη

+ η − T : L + (ρθ q ⋅ g ≤ 0ψ̇ θ̇ ρ−1 )−1

{ , θ, , , s}E
e

ḡ B̄

Ee s

= ( )T : Lω̇
ρ0

ρ

or= (det F)TT̃ = ( )TT̃
ρ0

ρ

= +ω̇ ω̇e ω̇p

= : , = ( ) :ω̇e
T̃ Ė

e
ω̇p Ce

T̃ Lp
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