Created: 2025-10-06 Mon 04:24
Scientific Context
Key Phenomena
DNS and Analytical Foundations
Modal Analysis (POD)
Mechanistic Understanding
Recent Advances
Background
Governing Equations
\begin{align} \nabla \cdot \mathbf{u} &= 0, \\ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{u} &= -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u} - 2 \boldsymbol{\Omega}\times\mathbf{u} \end{align}References: Alfredsson & Persson (1989)[1], Johnston et al. (1972)[2]
Simulation Setup
Navier-Stokes in Cylindrical Coordinates
\begin{align} \frac{\partial w}{\partial t} + w \frac{\partial w}{\partial r} + \frac{v}{r} \frac{\partial w}{\partial \theta} + u \frac{\partial w}{\partial x} - \frac{v^2}{r} &= -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\mathcal{D} w - \frac{w}{r^2} - \frac{2}{r^2}\frac{\partial v}{\partial \theta} \right) - 2\Omega v \\ \frac{\partial v}{\partial t} + w \frac{\partial v}{\partial r} + \frac{vw}{r} + \frac{v}{r} \frac{\partial v}{\partial \theta} + u \frac{\partial v}{\partial x} &= -\frac{1}{\rho r} \frac{\partial p}{\partial \theta} + \nu \left(\mathcal{D} v - \frac{v}{r^2} + \frac{2}{r^2}\frac{\partial w}{\partial \theta} \right) + 2\Omega w \\ \frac{\partial u}{\partial t} + w \frac{\partial u}{\partial r} + \frac{v}{r} \frac{\partial u}{\partial \theta} + u \frac{\partial u}{\partial x} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \mathcal{D} u \end{align}References: Kundu (2015)[3], Hellström et al. (2017)[4]
Mesh Details
Boundary Conditions
\begin{align} u_r(R) &= 0, \\ u_\theta(R) &= \Omega R, \\ u_x(R) &= 0 \end{align}Rotation vector: Ω = Ω e_k; smooth wall, incompressible flow
Simulation Domain
Governing Equations
\begin{align} \nabla \cdot \boldsymbol{u} &= 0 \\ \frac{\partial \boldsymbol{u}}{\partial t}+ (\boldsymbol{u}\cdot\nabla)\boldsymbol{u} &= -\nabla p + \frac{1}{Re} \nabla^2 \boldsymbol{u} \end{align}Mesh Images
Non-uniform mesh (finer near walls)
Uniform, interpolated mesh for POD analysis
Grid Spacings (y⁺ units)
Re | Δr⁺ / Δθ⁺ / Δz⁺ | N Δt × 10⁶ |
---|---|---|
5,300 | 0.14–4 / 1.5–4.5 / 3–9.9 | 20 |
11,700 | 0.15–4.5 / 1.5–4.8 / 3–10 | 120 |
Boundary Conditions
\begin{align} u_r(R) &= 0, \\ u_\theta(R) &= \Omega R, \\ u_x(R) &= 0 \end{align}Rotation vector: Ω = Ω e_k; smooth wall; incompressible flow
(2.1) Radial eigenvalue problem:
$$ \int S(k, m; r, r') \, \Phi_n(k, m; r') \, r' \, dr' = \lambda_n(k, m) \, \Phi_n(k, m; r) $$(2.2) Cross-correlation tensor:
$$ S(k, m; r, r') = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}(k, m; r, t) \, \mathbf{u}^*(k, m; r', t) \, dt $$(2.3) POD coefficient projection:
$$ \alpha_n(k, m; t) = \int \mathbf{u}(k, m; r, t) \, \Phi_n^*(k, m; r) \, r \, dr $$(2.4) Time-domain eigenvalue problem:
$$ \int R(k, m; t, t') \, \alpha_n(k, m; t') \, dt' = \lambda_n(k, m) \, \alpha_n(k, m; t) $$(2.5) Mode reconstruction:
$$ \int \mathbf{u}^T(k, m; r, t) \, \alpha_n^*(k, m; t) \, dt = \Phi_n^T(k, m; r) \, \lambda_n(k, m) $$(2.6) Conditional mode definition:
$$ \Psi_n(m; \xi, r) = \lim_{\chi \to \infty} \frac{1}{\chi} \int_0^\chi \int_0^\tau \mathbf{u}^T(m; r, x+\xi, t) \, \alpha_n(m; x, t) \, dt \, dx $$Azimuthal FFT:
Streamwise FFT:
Why FFT?
Nature of POD Modes:
Snapshot POD:
Complementarity:
POD Overview
Snapshot POD: Hilbert Space
Direct POD Equation
Temporal Coefficients
Correlation Tensor
Time Coefficient
Figure 1: \(N=0.0\) Radial POD Azimuthal Modes
Figure 2: \(N=0.5\) Radial POD Azimuthal Modes
Figure 3: Ref (Hellstrom 2017 Benchmark)
Figure 4: \(N=3\) Radial POD Azimuthal Modes
POD Modes & 2D Projection
Radial Modal Profile Equation
2D POD Projection Example
Streamwise Component φ², S=3.0
Streamwise Component φ³, S=3.0
Streamwise Component φ⁴, S=3.0
Derivation of POD Projections