POD Analysis of Turbulent Pipe Flow

M. Raba

Created: 2025-10-06 Mon 04:24

Background and Motivation

Literature Review

Background and Motivation
Talk Title: POD Analysis of Turbulent Pipe Flow
Why Rotating Pipe Flow?
  • Simple geometry, yet rich in turbulent dynamics
  • Ideal for studying rotation-induced turbulence suppression
  • Relevant to aerospace, combustion, and industrial flows
Historical Observations:
  • Rotation reduces skin friction and pressure loss
  • Experiments (e.g., White 1964, Kikuyama et al. 1983) showed relaminarization at high rotation rates
Research Gaps & Objectives
Challenges:
  • Limited DNS studies at moderate-to-high Reynolds numbers
  • RANS/LES models struggle to capture suppression mechanisms
Goals of This Work:
  • Use DNS to quantify turbulence suppression
  • Apply POD to identify dominant coherent structures
  • Provide benchmark data for turbulence model validation
This study bridges the gap between high-fidelity simulations and reduced-order modeling of rotating turbulent flows.

DNS Turbulent Model

DNS Configuration: Rotating Turbulent Pipe Flow
Flow Type: Axially rotating turbulent pipe flow
Solver: Nek5000 (Spectral Element Method)
Reynolds Numbers: 5,300 and 11,700
Rotation Numbers (N): 0 to 3
Domain: Streamwise extent of 15D, periodic boundaries
Purpose: Study turbulence suppression and provide DNS benchmark data
Numerical & Grid Details
Time Integration:
  • Viscous terms: BDF3 (implicit)
  • Nonlinear terms: Explicit extrapolation (3rd order)
Grid Resolution (wall units y⁺):
  • Radial: 0.14–4.4 (Re = 5300), 0.16–4.7 (Re = 11,700)
  • Azimuthal: 1.5–5.0
  • Streamwise: 3.0–9.9
Mesh: Hexahedral elements with high-order tensor polynomials
Parallelization: MPI with auto-tuned algorithms
Pressure Solver: Algebraic Multigrid (AMG)
Temporal Averaging: Over 6.5 flow-throughs (after transient)

Background: Rotating Pipe Flow & Relaminarization

Scientific Context

  • Rotating pipe flow is a canonical system for studying flow stabilization and relaminarization.
  • Rotation modifies turbulence production and redistributes momentum through Coriolis and centrifugal effects.
  • Relaminarization occurs when rotation suppresses the near-wall turbulence regeneration cycle.

Key Phenomena

  • Competition between destabilizing wall shear and stabilizing radial pressure gradients.
  • Reduction in Reynolds stresses and near-wall streaks at high rotation rates.
  • Relaminarized or quasi-laminar states can persist at high Reynolds numbers.

[1] White (1964), J. Fluid Mech. — early rotating pipe experiments. [2] Kikuyama et al. (1983), JSME Int. J. — visualization of relaminarization. [3] Imao (1996), Exp. Fluids — centrifugal stabilization and mean profiles.

DNS, Theory, and Modal Decomposition

DNS and Analytical Foundations

  • DNS captures relaminarization at Re = 10⁴–10⁵ under rotation.
  • Scaling and symmetry analyses (Oberlack, 1999; 2001) relate turbulence structure to invariants.
  • Hellström et al. (2017) provide reproducible experimental and DNS methodology for relaminarization.

Modal Analysis (POD)

  • Proper Orthogonal Decomposition (POD) identifies energy-dominant coherent structures.
  • Developed by Lumley (1967); extended by Taira et al. (2017) for complex turbulent systems.
  • Recent studies (Brehm 2019; Ashton 2019) combine DNS and POD for energy transfer diagnostics.

[1] Orlandi & Fatica (1997), J. Fluid Mech. — first DNS of rotating pipe turbulence. [2] Feiz & Tavoularis (2005), Phys. Fluids — DNS of turbulent pipe under rotation. [3] Hellström et al. (2017), Phys. Rev. Fluids — experimental/DNS methodology for relaminarization. [4] Oberlack (1999; 2001), J. Fluid Mech. — scaling and symmetry theory. [5] Lumley (1967), Atmos. Turbulence; Taira et al. (2017), AIAA J.

Control & Transition Mechanisms

Mechanistic Understanding

  • Rotation alters the balance of production and dissipation terms in the turbulent kinetic energy budget.
  • Flow control studies show relaminarization through imposed swirl or wall rotation.
  • Experimental relaminarization occurs by suppression of near-wall vortices and streak breakdown.

Recent Advances

  • Kühnen et al. (2014, 2018) demonstrated full relaminarization through wall rotation and suction control.
  • These results motivate DNS-based exploration of transient energy transfer and POD modal evolution.
  • Ongoing studies bridge classical rotation control and modern data-driven modal analysis.

[1] Kühnen et al. (2014; 2018), Nat. Phys. — experimental control and relaminarization. [2] Brehm (2019); Ashton (2019) — POD analysis of relaminarizing turbulence. [3] Kolmogorov (1941), Dokl. Akad. Nauk SSSR — statistical theory foundation.

Method Spectral Element Direct Numerical Simulation (DNS)

Slide 1: Introduction

Background

  • Transition and relaminarization in rotating pipe flows depend on rotation rate and Reynolds number.
  • Relaminarization can occur when imposed swirl suppresses near-wall turbulence production.
  • Applications: rotating heat exchangers, turbomachinery, compact fluid systems.

Governing Equations

\begin{align} \nabla \cdot \mathbf{u} &= 0, \\ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{u} &= -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{u} - 2 \boldsymbol{\Omega}\times\mathbf{u} \end{align}

References: Alfredsson & Persson (1989)[1], Johnston et al. (1972)[2]

Slide 2: Spectral Element Method (DNS)

Simulation Setup

  • Circular pipe: D=1, L=12D
  • Re = 5300, 12700, non-slip wall
  • Legendre basis, polynomial order 6
  • Non-uniform mesh finer near wall to capture Kolmogorov/Taylor scales

Navier-Stokes in Cylindrical Coordinates

\begin{align} \frac{\partial w}{\partial t} + w \frac{\partial w}{\partial r} + \frac{v}{r} \frac{\partial w}{\partial \theta} + u \frac{\partial w}{\partial x} - \frac{v^2}{r} &= -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\mathcal{D} w - \frac{w}{r^2} - \frac{2}{r^2}\frac{\partial v}{\partial \theta} \right) - 2\Omega v \\ \frac{\partial v}{\partial t} + w \frac{\partial v}{\partial r} + \frac{vw}{r} + \frac{v}{r} \frac{\partial v}{\partial \theta} + u \frac{\partial v}{\partial x} &= -\frac{1}{\rho r} \frac{\partial p}{\partial \theta} + \nu \left(\mathcal{D} v - \frac{v}{r^2} + \frac{2}{r^2}\frac{\partial w}{\partial \theta} \right) + 2\Omega w \\ \frac{\partial u}{\partial t} + w \frac{\partial u}{\partial r} + \frac{v}{r} \frac{\partial u}{\partial \theta} + u \frac{\partial u}{\partial x} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \mathcal{D} u \end{align}

References: Kundu (2015)[3], Hellström et al. (2017)[4]

Slide 3: Mesh and Simulation Details

Mesh Details

  • Non-uniform grid denser near walls
  • Grid spacings (y+) for streamwise extent of 15D
  • Example: Re=5300, Δr⁺=0.14–4, Δθ⁺=1.5–4.5, Δz⁺=3–9.9

Boundary Conditions

\begin{align} u_r(R) &= 0, \\ u_\theta(R) &= \Omega R, \\ u_x(R) &= 0 \end{align}

Rotation vector: Ω = Ω e_k; smooth wall, incompressible flow


[1] Alfredsson & Persson, 1989.
[2] Johnston et al., 1972.
[3] Kundu, 2015, Fluid Mechanics.
[4] Hellström et al., 2017, J. Fluid Mech. 829:164–188.

DNS Mesh

Simulation Domain

  • Circular pipe, D = 1, L = 12D
  • Reynolds numbers: 5300, 12700
  • Non-slip at walls, periodic at inlet/outlet
  • Spectral element method: Legendre basis, order l = 6

Governing Equations

\begin{align} \nabla \cdot \boldsymbol{u} &= 0 \\ \frac{\partial \boldsymbol{u}}{\partial t}+ (\boldsymbol{u}\cdot\nabla)\boldsymbol{u} &= -\nabla p + \frac{1}{Re} \nabla^2 \boldsymbol{u} \end{align}

Mesh Images

Non-uniform mesh (finer near walls)

Uniform, interpolated mesh for POD analysis

Grid Spacing and Boundary Conditions

Grid Spacings (y⁺ units)

Re Δr⁺ / Δθ⁺ / Δz⁺ N Δt × 10⁶
5,300 0.14–4 / 1.5–4.5 / 3–9.9 20
11,700 0.15–4.5 / 1.5–4.8 / 3–10 120

Boundary Conditions

\begin{align} u_r(R) &= 0, \\ u_\theta(R) &= \Omega R, \\ u_x(R) &= 0 \end{align}

Rotation vector: Ω = Ω e_k; smooth wall; incompressible flow

Proper Orthogonal Decomposition

POD Energy Modes

Direct POD Formulation

(2.1) Radial eigenvalue problem:

$$ \int S(k, m; r, r') \, \Phi_n(k, m; r') \, r' \, dr' = \lambda_n(k, m) \, \Phi_n(k, m; r) $$

(2.2) Cross-correlation tensor:

$$ S(k, m; r, r') = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}(k, m; r, t) \, \mathbf{u}^*(k, m; r', t) \, dt $$

(2.3) POD coefficient projection:

$$ \alpha_n(k, m; t) = \int \mathbf{u}(k, m; r, t) \, \Phi_n^*(k, m; r) \, r \, dr $$
Snapshot POD & Conditional Mode

(2.4) Time-domain eigenvalue problem:

$$ \int R(k, m; t, t') \, \alpha_n(k, m; t') \, dt' = \lambda_n(k, m) \, \alpha_n(k, m; t) $$

(2.5) Mode reconstruction:

$$ \int \mathbf{u}^T(k, m; r, t) \, \alpha_n^*(k, m; t) \, dt = \Phi_n^T(k, m; r) \, \lambda_n(k, m) $$

(2.6) Conditional mode definition:

$$ \Psi_n(m; \xi, r) = \lim_{\chi \to \infty} \frac{1}{\chi} \int_0^\chi \int_0^\tau \mathbf{u}^T(m; r, x+\xi, t) \, \alpha_n(m; x, t) \, dt \, dx $$

FFT / POD Interpretation

FFT Decomposition in Pipe Flow

Azimuthal FFT:

  • Exploits rotational symmetry of the pipe
  • Azimuthal mode number m defines spanwise length scale
  • Highlights circumferential structure and periodicity

Streamwise FFT:

  • Captures axial periodicity and wavelength
  • Mode number k relates to streamwise extent of structures
  • Useful for identifying repeating patterns like VLSMs

Why FFT?

  • Geometry-driven decomposition
  • Modes are known a priori due to symmetry
  • Accelerates POD convergence
Proper Orthogonal Decomposition (POD)

Nature of POD Modes:

  • Data-driven: extracted from simulation or experiment
  • Ranked by energy content (most energetic first)
  • Capture coherent structures across scales

Snapshot POD:

  • Assumes separability of space and time
  • Reduces computational cost by working in time domain
  • Enables modal analysis of large datasets

Complementarity:

  • FFT modes reflect geometry
  • POD modes reflect physics and energy distribution
  • Combined FFT-POD approach enhances interpretability

Proper Orthogonal Decomposition (POD)

POD Overview

  • Decomposes turbulent velocity field to a reduced order model (ROM)
  • Orthogonal basis captures dominant flow patterns 1
  • Snapshot POD faster convergence than classical POD
  • Hybrid FFT-POD: Fourier modes in θ, POD in radial direction

Snapshot POD: Hilbert Space

$$\langle q_1, q_2 \rangle_{r,t} = \int q_1 q_2^* r \, dr \, dt$$ $$\lambda = \frac{ E\{ | q(r,t) , \Phi(r,t) |^2 \} }{ \langle \Phi(r,t), \Phi(r,t) \rangle_{r,t} }$$ $$\int R(t,t') \Phi(t')\,dt = \lambda \Phi(t)$$

[1] Lumley, 1967; [2] Taira et al., 2017.

Snapshot POD: Eigenvalue Problem

Direct POD Equation

$$\int_{r'} \mathbf{S}(k; m; r, r') \Phi^{(n)}(k; m; r') r' dr' = \lambda^{(n)}(k;m) \Phi^{(n)}(k; m; r)$$ $$\mathbf{S}(k; m; r, r') = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}(k; m; r, t) \mathbf{u}^*(k; m; r', t) dt$$

Temporal Coefficients

$$\alpha^{(n)}(k; m; t) = \int_r \mathbf{u}(k; m; r, t) \Phi^{(n)^*}(k; m; r) r dr$$ $$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}_T(k; m; r, t) \alpha^{(n)^*}(k; m; t) dt = \Phi_T^{(n)}(k; m; r) \lambda^{(n)}(k;m)$$

[1] Lumley, 1967; [2] Taira et al., 2017; [3] Tutkun & George, 2001; [4] Hellström & Smits, 2014.

Classical POD Form

Correlation Tensor

$$\int_{r'} \mathbf{S}(k; m; r, r') \Phi^{(n)}(k; m; r') r' dr' = \lambda^{(n)}(k; m) \Phi^{(n)}(k; m; r)$$ $$\int_{r'} W_{i,j}(r,r') \hat{\phi}_j^{*(n)}(r') dr' = \hat{\lambda}^{(n)}(m;f) \hat{\phi}_i^{(n)}(r,m;f)$$

Time Coefficient

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau (r^{1/2} \mathbf{u}(m;r,t), r^{1/2}\mathbf{u}(m;r,t')) \alpha_n(m;t') dt' = \lambda_n(m) \alpha_n(m;t)$$ $$\alpha_n(m;t) = \int_r \mathbf{u}(m;r,t) r^{1/2} \Phi_n^*(m;r) dr$$

[1] Tutkun & George, 2001; [2] Hellström & Smits, 2014.

Radial Projections

POD Mode Behavior at N = 0

POD Mode Behavior at N = 0
  • Rotation Number: N = 0 (non-rotating pipe)
  • Flow Regime: Classical turbulent pipe flow
  • Azimuthal Modes: m = 2 to 36
  • Radial Profiles: Symmetric, peak away from wall
  • Conditional Modes: Show coherent structures aligned with streamwise direction
  • Interpretation: Near-wall turbulence is strong; structures are well-developed and span the pipe radius
This baseline case helps contrast the effects of rotation on POD mode shape and energy distribution.
POD Modes for N=0

POD Mode Behavior at N = 1

POD Mode Behavior at N = 1
  • Rotation Number: N = 1 (moderate rotation)
  • Swirl Number: Ratio of azimuthal to axial momentum flux; quantifies rotational intensity
  • Flow Regime: Transitional toward relaminarization
  • Azimuthal Modes: m = 2 to 36
  • Radial Profiles: Begin to shift inward; near-wall peaks flatten
  • Azimuthal Structure: Enhanced swirl due to Coriolis effects
  • Interpretation: Rotation suppresses near-wall turbulence and redistributes energy toward the core
Compared to N = 0, the POD modes at N = 1 show early signs of turbulence suppression and structural reorganization.
POD Modes for N=1

N=3

POD Mode Behavior at N = 3
  • Rotation Number: N = 3 (strong rotation)
  • Swirl Number: High azimuthal momentum; dominant rotational effects
  • Flow Regime: Strong turbulence suppression; approaching relaminarization
  • Azimuthal Modes: Energy concentrated in low modes (m = 5–20)
  • Radial Profiles: Streamwise structures shift closer to wall; radial structures broaden
  • Azimuthal Structure: Reduced wall-normal extent; secondary peaks emerge
  • Interpretation: Rotation reorganizes turbulence, suppresses near-wall activity, and enhances core coherence
At N = 3, POD modes show strong coherence and redistribution of energy, with dominant structures moving toward the wall and secondary peaks forming near the centerline.
POD Modes for N=3

FFT-POD Mode Shapes

POD Mode 1 at Re = 11,700 for Azimuthal Modes m = 5 and m = 10
POD Mode 1, m=5
Azimuthal Mode m = 5 (N = 3)
Coherent structure with 5-lobed symmetry; strong modal energy concentration.
POD Mode 1, m=10
Azimuthal Mode m = 10 (N = 1)
Finer-scale oscillatory structure; reduced energy per mode compared to m = 5.

Radial POD Modes

screenshot2023-01-05_13-26-09_.png

Figure 1: \(N=0.0\) Radial POD Azimuthal Modes

\(N=0.5\)

screenshot2023-01-06_11-43-02_.png

Figure 2: \(N=0.5\) Radial POD Azimuthal Modes

screenshot2023-01-06_11-48-02_.png

Figure 3: Ref (Hellstrom 2017 Benchmark)

\(N=3\)

screenshot2023-04-15_10-48-49_.png

Figure 4: \(N=3\) Radial POD Azimuthal Modes

Rotating Pipe POD Results

Rotating Pipe POD Results — POD Theory & 2D Projection

POD Modes & 2D Projection

  • Azimuthal modes m ∈ [1,30]
  • Streamwise-invariant, averaged along x
  • Phase-flipped to ensure consistent ±1 orientation
  • FFT in θ direction for radial profiles

Radial Modal Profile Equation

\[ \begin{align} \Phi_{\mathrm{T}}^{(n)}(k ; m ; r) \lambda^{(n)}( m) &= \left\langle\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_0^\tau \mathbf{u}_{\mathrm{T}}(k ; m ; r, t) \alpha^{(n)^*}(k ; m ; t) dt \right\rangle \\ &= \mathcal{F}_\theta \left( \lim _{\tau \rightarrow \infty} \frac{1}{N} \sum_k^{N} \frac{1}{\tau} \int_0^\tau \mathbf{u}_{\mathrm{T}}(k ; \theta ; r, t) \alpha^{(n)^*}(k ; m ; t) dt \right) \\ &= \text{(Fourier transform in azimuthal direction of phase-shifted eigenface)} \end{align} \]

2D POD Projection Example

Smooth POD Mode

Modal Profile φ²

Streamwise Component φ², S=3.0

Modal φ²

Modal Profile φ³

Streamwise Component φ³, S=3.0

Modal φ³

Modal Profile φ⁴

Streamwise Component φ⁴, S=3.0

Modal φ⁴

Derivation of POD

Derivation of POD Projections

POD Derivation

Citations

References

  1. Hellström, L. H. O. (2017). Relaminarisation of Turbulent Pipe Flow through Oscillatory Forcing. PhD thesis, Princeton University
    — Methodology and experimental setup for relaminarization in rotating/oscillatory conditions.
  2. Kühnen, J., Holtz, E., Hof, B. (2014). Experimental investigation of turbulent drag reduction by wall rotation. J. Fluid Mech., 738:463–487.
    — Shows streamwise wall rotation can trigger relaminarization.
  3. Kühnen, J., Song, B., Scarselli, D., Budanur, N. B., Riedl, M., Willis, A. P., Hof, B. (2018). Destabilizing turbulence in pipe flow. Nature Phys., 14(4):386–390.
    — Demonstrated full relaminarization via body forcing.
  4. Xiao, Y., Peixinho, J. (2019). Experimental investigation of relaminarisation of turbulent flow in a rotating pipe. J. Fluid Mech., 862: R1.
    — Full relaminarization achieved through global rotation.
  5. Czarske, J., Büttner, L., Budinger, M., et al. (2002). Velocity measurements in rotating turbulent pipe flow. Exp. Fluids, 33(1):115–123.
    — Laser-Doppler data showing turbulence structure changes under rotation.
  1. Johnston, J. P., Halleen, R. M., Lezius, D. K. (1972). Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech., 56(3):533–557.
    — Classic rotation-induced turbulence suppression study.
  2. Grundestam, O., Wallin, S., Johansson, A. V. (2008). Direct numerical simulations of rotating turbulent pipe flow. J. Fluid Mech., 598:177–199.
    — DNS showing relaminarization trends with rotation rate.
  3. Facciolo, L., Peixinho, J. (2018). Dynamics of laminar and turbulent flows in rotating pipes. Phys. Rev. Fluids, 3:034603.
    — Defines critical rotation numbers for relaminarization.
  4. Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous. Phil. Trans. R. Soc., 174:935–982.
    — Foundational work on laminar–turbulent transition.
  5. Wu, X., Moin, P. (2008). A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech., 608:81–112.
    — DNS baseline for assessing relaminarization thresholds.